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KURZFASSUNG

Der Letztere Paradigmenwechsel zu erneuerbaren Energieerzeugung stellt eine neue
Situation dar, in der die Überwachung von Stromnetzstabilität immer mehr zu einem
Hauptanliegen wird. Vorige Forschung ließ uns folgern, dass der Aufbau eines mengen-
basierten Ansatzes zur automatisierten Optimierung der transienten Stromnetzstabil-
ität möglich sein soll.

Die vorliegende Masterarbeit befasst sich zunächst mit theoretischen Vorkennt-
nissen zur mengenbasierten transienten Stabilitätsanalyse von Stromnetzen: oszilla-
torische Modelle, Viability Theory, Theorie der Barrieren, Netzentkopplung und Valid-
ität von MRPI-Mengen. Anschließend befassen wir uns mit der Erstellung eines Op-
timierungsproblems für Bestimmung von MRPI-Mengen einschließlich mathematis-
cher Formulierung und Definition von Nutzenfunktionen. Übliche Optimierungsalgorith-
men und entsprechende Löser werden vorgestellt, und auf das zuvor definierte Prob-
lem zur Stabilitätsoptimierung des IEEE-9-Bus-Testsystems angewendet. Ergebnisse
werden ausgewertet und eine Schätzung der Steigerung von Rechenkomplexität bei
komplexeren Systemen wird abgeleitet. Folgend wird die Kategorisierung der Netzsta-
bilität gegeben und Ansätze zur Stabilitätsbewertung werden zusammengefasst. Ab-
schließendwird diemengenbasierte Bestimmung der Critical Clearing Time erklärt, und
eine Heuristik für mengenbasierte CCT-Optimierung vorgestellt.
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ABSTRACT

The recent paradigm shift towards renewable means of energy generation presents a
new situation in which power grid stability governance is more and more of a principal
concern. Preceding research let us conclude that building a set-based approach for
automated power grid transient stability optimization should be feasible.

The thesis at hand initially overviews theoretical preliminaries of set-based transient
stability analysis of power grids: oscillatory models, viability theory, the theory of barri-
ers, grid decoupling, and MRPI set validity. The work then engages in outlining an opti-
mization problem for MRPI set determination including mathematical formulation and
definition of objection functions. Common optimization algorithms and correspond-
ing solvers are surveyed, and applied to the problem defined beforehand for stability-
optimizing the IEEE nine-bus test system. Results are evaluated, and an estimation for
increase in computational complexity for more complex systems is deducted. Subse-
quently, a categorization of power system stability is given, and stability assessment
approaches are reviewed. In conclusion set-based critical clearing time determination
is presented, and a heuristic for set-based CCT optimization is showcased.
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NOTATION

A Node MRPI area
A Power output / power demand of the th node
A Admissible set
[∂A]_ Admissible set barrier
c Combined node dynamics vector
D Damping constant of the th node
D Disturbance space
d Disturbance input
d̄ Input corresponding to the barrier trajectory
δ Torque angle or angular deviation
δmin, δmx Angular constraints boundaries
δsat Saturated torque angle
E∗


Steady-state internal voltage of the th node
ƒ (·) System dynamics
ƒG,,j The th component of the dynamics of the jth generator node
ƒL,,j The th component of the dynamics of the jth load node
(·) Continuous feedback control law
 Set of all generator nodes
G Constraint set
G0 Constraint boundary set
G_ Constraint internal set
γj Phase shift involved in the coupling between nodes  and j
g(·) Constraint function of the th constraint
H Inertia constant of the th node
h(·) System output function
 Current injection vector
ref Index of the reference node
Kj Strength of dynamical coupling between nodes  and j
Λ Set of all load nodes
λ̄ Adjoint vector
λ⌣, Lower adjoint evolution
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λ⌢, Upper adjoint evolution
M Angular momentum
M Maximal robust positively invariant (MRPI) set
[∂M]_ MRPI set barrier
N Number of machines/nodes/oscillators in the system
N Set of the th node’s neighboring nodes
ω,ωR Frequency or rotation speed, reference frequency
P∗


Steady-state active power injection of the th node
Ps, Pe, P Shaft-, electrical-, and accelerating power
p Number of state-space constraints
Θ Oscillator phase of the th oscillator
t̄ Time of angular constraint boundary intersection
t̄⌣, Time of the lower barrier candidate’s tangential intersection of the

higher constraint boundary.
t̄⌢, Time of the upper barrier candidate’s tangential intersection of the

lower constraint boundary.
t̃ Time of the first ω = 0 axis intersection
U State-dependent control space
 Control input
X State space
X(·) Phase-dependent influence
 State vector
̄ Initial state on the admissible-, or MRPI barrier
eq State vector at equilibrium
d̄,̄,d̄ Barrier trajectory with initial conditions ̄ and brd
⌣, Lower candidate trajectory
⌢, Upper candidate trajectory
Y Output space
Y Nodal admittance matrix
y Output vector
yj Admittance between nodes  and j
yj Admittance between nodes  and j
V Voltage injection vector
V∗


Steady-state terminal voltage of the th node
Z Control space
Z(·) Phase-dependent response
z̄ State of angular constraint boundary intersection
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INTRODUCTION 1
1.1 Motivation and Problem Setup

During the last century, electricity has certainly become an essential necessity of our
lives. With that, the power grid came to be one of the most extensive, most complex,
and most critical systems humankind relies on. Nevertheless, the very fact that these
systems interconnect an extensive amount of power devices constitutes an inherent
vulnerability against contingencies.

All the more as we observe an ever-growing urge for a shift towards renewable
sources of energy: new forms of power generation not only are prone to environmental
uncertainties, but recent technological developments counteract power system stabil-
ity in general. This is because regenerative energy production means are usually con-
trolled by power electronics in place of mechanical variables such asmoment of inertia
or friction. These are associated with less inertia and therefore less damping, hence
falling behind in stability. Further research on transient power system stability analysis
is thus much desirable in order to have a grasp on aforementioned challenges.

In the preceding project work [46] we have already examined set based transient sta-
bility analysis and the validity of safety sets, with a focus on finding such sets through a
systematic approach. Building on this, the problem setup that we consider is an oscilla-
torymodel of a power grid, decomposed into individual power elements, and a research
framework in which conventional and set-based power analysis tools have been imple-
mented and are readily available.

1.2 Task Description

Power grid’s stability is classified into voltage stability, frequency stability, and rotor an-
gle stability, with further specifications related to short and long term effects, as well as
the consideration of small and big disturbances which are affecting the grid. The focus
of this work is on the short term rotor angle stability where the power grid is subjected
to a large disturbance. This form of stability is also known as transient stability. There
exist several approaches for the transient stability analysis of power grids. Well known
methods are based on time simulations, energy functions, and set-based methods. A
novel set-based approach for the transient stability problem via the theory of barriers
is presented in [4]. The goal of this thesis is to consider the transient stability problem
via invariant sets constructed by the theory of barriers and investigate the problem of
invalid sets. The specific tasks for this thesis are:
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1.2 TASK DESCRIPTION

1. Literature review and understanding of the basic principles of the considered top-
ics.

a) Reading basic literature about power grid stability and understanding the sta-
bility problems as well as approaches considering the rotor angle stability
and particularly the transient stability problem.

b) Reading and understanding the principle of modeling a power grid as a net-
work of coupled oscillators.

c) Summarizing the principles of common oscillatory models (EN/SM/SP), and
the construction thereof.

d) Overview the process of decoupling a power grid for the purpose of set-based
analysis.

e) Studying and summarizing the theory of barriers [14] [18] and particularly the
work related to the transient stability analysis of power grids via theory of
barriers including the idea of considering a decoupled power grid [4].

2. Summarizing of related theories and preliminary research.

a) Overviewing how the research framework is set up, including theoretical and
technical aspects thereof.

b) Describing MRPI set validity, and possible reasons for invalidities.

c) Introducing the conjecture on barrier phases and the connection between
phases and set validity. Show how such a connection might serve as a basis
for an iterative algorithm.

d) Formulate a theoretical optimization problem making use of the conjecture.

3. Implementation an optimization problem for the sake of obtaining and optimizing
valid MRPI sets in an automated manner.

a) Implementation the formulated optimization problem in a parametrizable
way.

b) Defining and implementing suitable objective functions.

c) Overviewing and comparing common optimization algorithms.

d) Comparing different combinations of optimization algorithms, goal func-
tions, and oscillatory models as applied to the nine-bus test system.

e) Analyzing the applicability of the most promising approaches to more com-
plex power grids.

f) Illustrating a practical use-case of set-based analysis on the example of
the critical clearing time problem, including a comparison with other ap-
proaches.

4. Finalizing the thesis and summarizing the results as well as discussing further
research directions.

2



1.3 OVERVIEW

1.3 Overview

The principal objective of this thesis is to further unfold the findings and questions that
arose in [46]. In particular, we set out to investigate the automatability of selecting the
generators’ angular deviation constraints, such that these result inMRPI sets of optimal
size.

Chapter 2 serves as an overview of preliminaries necessary for subsequent ex-
ploratory efforts. In it, we first recapitulate the coupled oscillator representation of
power grids, and deduce the system dynamics from Kuramoto’s formulation of the
swing equation. Then, the Kron reduction method —which provides for the size re-
duction of the nodal admittance matrix, and eventually a complete oscillatory graph—
is briefly characterized, followed by the electric circuit representation of transmis-
sion lines and the equivalent circuit of synchronous generators. Next, three oscillatory
models (Effective Network, Structure Preserving, and Synchronous Motor) and their
construction methods are surveyed, leading up to a tabular comparison of these ap-
proaches. What follows, is again a reiteration of viability theory fundamentals, includ-
ing the formulation of a general constrained, uncertain dynamical system, and of the
constraint-, admissible-, and MRPI set definitions. We define set barriers for aforemen-
tioned sets, and show that these can be obtained through numerical backwards inte-
gration. Finally, the two topologically distinct types of valid MRPI sets are presented, as
well as the two sorts of invalidities that an MRPI barrier may be subject to.

Chapter 3 starts off by giving the mathematical formulation of an optimization prob-
lem and a goal function structure in general. We formulate inequality constraints —
relative to each machines’ equilibrium point— for our special case of power elements.
Next, we summarize desirable properties of an ideal objective function to beminimized,
and contemplate over the computational advantage the constraint violation might en-
able, as well as possible discontinuity of the objective function due to the jumping phe-
nomenon. Having considered the above, we propose two optimization methods: the
MRPI set area method, and the span method. As hereby the equilibrium point is much
relied on (remaining static throughout optimization it serves as an origin), we continue
by showing how it can be obtained. At last, an overview of six common optimization
algorithms follows.

With Chapter 4 theory gets put into practice. We show the software landscape on
which we rely in our examinations: in what steps an optimization task is generally car-
ried out in MATLAB, what solvers does one have access to through what toolboxes,
and how we utilize Nishikawa’s pg_sync_models library for MATPOWER cases and os-
cillatory model generation. We present the IEEE nine-bus three-generator test system
along with two initialization vectors on which we examine optimization performance.
We compare six MATLAB-provided solvers’ performance with both the area method
based-, as well as the span method based objective function by evaluating their speed
and —where present— end results. To conclude this chapter, we explore the applicabil-
ity of MRPI set area optimization to power grids more complicated than the nine-bus
test system. Hereby, the EN and SP oscillatory models —each with the span method

3



1.3 OVERVIEW

based goal function— are observed, especially how the CPU time required for objective
function evaluation grows as the complexity of the inspected power grid increases.

Having elaborated on the feasibility of automated angular constraint adjustment and
MRPI set area optimization, in Chapter 5 we wish to exhibit a practical engineering use-
case. For this, we aim at drawing a connection between MRPI set area size, and critical
clearing time. Hereby, a classification of power system stability is provided, showing
the whereabouts of rotor angle transient stability in this hierarchy. We further elabo-
rate on transient stability, outlining Dy-Liacco’s diagram of power grid operating states,
and show what operating states the pre-fault, fault-on, and post-fault scenarios might
correspond to. We proceed to describe the classical model of synchronous electrical
machines, and the power-angle relationship. Building on this, we deduct the equal ar-
eas criterion, and review further approaches for stability analysis, including time do-
main simulation, direct methods, model-free approaches, and set-based methods. Sub-
sequently, considerations behind set-based CCT determination are outlined, and a test
framework —based on the nine-bus power grid’s EN oscillatory model, and two distinct
fault-on scenarios— is set up. At the very end we compare MRPI set areas and fault-on
trajectory lengths, as well as MRPI set areas and CCT estimates in search of correla-
tions.

4



THEORETICAL BACKGROUND 2
The generation of electrical energy and the delivery thereof is an area of electrical en-
gineering that brings along problems that excite many experts, as in our current times,
most households and businesses depend on a safe and reliable power source to oper-
ate.

However, such a power source presupposes a reliable transmission-, and distribution
grid of interoperating electrical equipment. When it comes to reliability, it is inevitable to
examine such an electrical network as a whole. Thus, power grid models for simulation
and analysis were developed to enable and support power systems management.

2.1 Coupled Oscillator Representation of Power Systems

Let us consider a grid of interconnected electrical components. As our work is mainly
concerned with transient rotor angle stability, a convenient enough model for our inves-
tigations is one that considers the rotor angle deviation, as well as its rate of change
as state variables. Said model designates the node with index ref as a reference bus
with a constant reference angle taken as 0, while all the other nodes’ state vectors are
described by

 =

�

1,

2,

�

=

�

δ

ω

�

(2.1)

Research around synchronization phenomena is all but new. As we have already pro-
vided in [46, sec. 2.2.1] a brief overview of the breakthroughs of Winfree [59], Huygens
[27], Kuramoto [38], and Filatrella [19], we omit any further historical survey. Instead we
introduce Nishikawa’s formulation of a power grid couplingmodel that “can be regarded
as a second-order analog of the Kuramoto model with arbitrary coupling structure” [49].
In saidmodel, a power grid ismodeled as aweb of interconnected oscillators described
through a set of swing equations of form:

 

2H

ωR

..
δ +

D

ωR

.
δ = A −

∑

j∈N

Kj · sin
�

δ − δj − γj
�

!

∀  ∈  ∪ Λ (2.2)

where

• δ is the th node’s angle deviation as compared to a reference node common to
the whole system.

• H is the th node inertia constant: H ̸= 0∀  ∈ , H = 0∀  ∈ Λ
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2.1 COUPLED OSCILLATOR REPRESENTATION OF POWER SYSTEMS

• ωR is a reference angular frequency for the system

• D is the th node damping constant

• A is the th node power output / power demand.

• Kj is a constant that represents the strength of the dynamical coupling between
the th and jth node

• γj represents a phase shift involved in the coupling between the th and jth node

• N is the set of all neighboring nodes of the th node

•  is the set of all generator nodes: nodes modeled as second order oscillators,
e.g. nodes with H ̸= 0

• Λ is the set of all load nodes: nodes modeled as first order oscillators, e.g. nodes
with H = 0

Using (2.2), the system dynamics can be described by the state’s time derivatiave.:

.
 =

� .
δ
.
ω

�

=





ω
ωR
2H

�

A − D
ωR
ω −

∑

j∈N
Kj · sin

�

δ − δj − γj
�

�



∀  ∈  (2.3)

.
 =

� .
δ
.
ω

�

=





ωR
D

�

A −
∑

j∈N
Kj · sin

�

δ − δj − γj
�

�

0



∀  ∈ Λ (2.4)

With that, the groundwork for an oscillatorymodel is concluded.However, [49] further on
conducted a comparative analysis of three leading power network structure models on
the basis of (2.2). Given that this thesis relies heavily on saidmodels, a brief introduction
will be provided in coming subsections.

2.1.1 Kron Reduction

Two of the three aforementioned models in [49] utilize a method called the Kron-
reduction, which is a method for node elimination in power systems through a process
most similar to Gauss-elimination.

In simplified terms, the method first considers the nodal admittance equation of the
unreduced, N-node network:

YV =  (2.5)

where Y ∈ CN×N is the nodal admittance matrix with elements

Yj =







y +
∑

yk ∀ k ∈ {1 . . . N} \ {} if  = j

−yj if  ̸= j
(2.6)
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2.1 COUPLED OSCILLATOR REPRESENTATION OF POWER SYSTEMS

where yj is the complex valued admittance between nodes  and j, and y is the th
node admittance to ground. Furthermore, V ∈ CN and  ∈ CN are the nodes’ voltage
and current injection vectors respectively.

Assuming that the current injection at the pth node is zero, (2.5) becomes

YV =







1..(p−1)

0

(p+1)..N






(2.7)

Then, the pth bus can be removed if voltage at that node is not of particular interest.
This is done by constructing an effective admittance matrix Yred ∈ C(N−1)×(N−1) of the
reduced network, so that voltages and currents at remaining nodes remain as before
the reduction:

Y red

�

V1..(p−1)

V(p+1)..N

�

=

�

1..(p−1)

(p+1)..N

�

(2.8)

According to [24, Eq. 7.67], elements of the reduced admittancematrix can be calculated
as

Y red
jk
= Yjk −

YjpYpk

Ypp
∀ j, k ∈ {1 . . . N} \ {p} (2.9)

Then, if necessary, the Kron reduction process (2.5)-(2.9) may be carried out recursively
until the desired number of zero-injection nodes are removed.

An important property of recursive Kron reduction is that it leads to a fully connected
reduced network (a compete graph). This is due to [15, Theorem 3.4/1)], stating that
two nodes are connected in the reduced network graph if and only if the two nodes
were connected in the original graph by an edge or a path in which all nodes have been
eliminated. That is, Y red

j
̸= 0 ∀ , j.

This is in contrast to the original, unreduced graph that often represents the physical
network structure of a power grid, and so usually contains numerous pairs of nodes
(generators or buses)  and j that are not connected, and thus Yj = 0. An Illustration of
this general change in topology is illustrated in Figure 2.1.

Figure 2.1: Illustration of the Kron-reduction. Left: the single line diagram of a power grid. Center:
equivalent representation with generators (denoted by red rectangles), and buses (denoted
by blue dots). Right: the corresponding Kron-reduced network. From [15, Fig. 2.4.].
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2.1 COUPLED OSCILLATOR REPRESENTATION OF POWER SYSTEMS

2.1.2 Electric Circuit Representation

Simple network representation of power grids are most concerned with representing
the topological structure of a power grid. Such representations consist of elements
such as generators, consumers, and transformers, with links between them represent-
ing transmission lines. They often reflect the topology of a real-world power network,
and are essential for analyzing power flow. The leftmost graph of Figure 2.1 illustrates
such a representation (notice how generated/consumed power units at each node are
shown), albeit fictitious ones.

However, simple network representation is incapable of describing dynamical behav-
ior of the interplay of power system components. For that, the most versatile electrical
circuit representation must be derived from the simple representation by the means of
substituting equivalent electrical circuits for components as well as transmission lines.

For example, transmission lines are traditionally represented in the so-called π-model
as shown in Figure 2.2.

Figure 2.2: Equivalent electrical circuit (π-model) of a medium-length transmission line. From
[24, Fig. 6.2].

while the synchronous generator is modeled by a constant voltage source behind a
transient reactance as in Figure 2.3.

Figure 2.3: Equivalent electrical circuit (voltage-behind-reactance, VBR-model) for a syn-
chronous generator. From [24, Fig. 3.8].
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2.1 COUPLED OSCILLATOR REPRESENTATION OF POWER SYSTEMS

For the representation of loads in the circuit diagram multiple approaches exist. In
fact, the difference between these load representations is a major difference between
the three network structure models whose introductions briefly follow.

To show how the simple network representation is translated into the electric circuit
representation, [49] called for a small illustratory network consisting of two generators
and a load in between as shown in Figure 2.4.

Figure 2.4: Modeling of power-grid network dynamics. Cropped from [49, Fig. 1].

Indeed, equivalent circuits from Figure 2.2 and Figure 2.3 were substituted for gener-
ators and transmission line, even though in the circuit equivalent for transmission line,
a transient impedance is shown instead of a resistance and a reactance. In the circuit
for synchronous generators, the resistance is omitted altogether.

2.1.3 The Effective Network (EN) Model

The effective network model (EN model for short) was initially proposed by [47], and is
also referred to as the network-reduction model or network-reduced model.

The essential consideration of themodel is that the nature of coupling between a pair
of generators connected to the same power grid is primarily determined by the structure
of the transmission lines and loads in between the generator nodes [49, S. 4.1], while the
dynamical interaction between said generators is described by applying the classical
model’s power-angle equation (5.3) for both machines.

Effective network representation is concerned with grasping the effect of aforemen-
tioned intermediate network structure on the dynamic interaction of each pair of gener-
ators through a single term that depends only on the generators’ state variables. This
can indeed be done through applying network reduction to a networkmodel that consid-
ers loads as constant impedances tied to the ground potential. Building such a model
involves the following steps:

9



2.1 COUPLED OSCILLATOR REPRESENTATION OF POWER SYSTEMS

First, the assumption ismade, that network structure is fixed, and that power demand
is constant. This is deemed viable for the purposes of transient stability analysis, as
only very short time scales are considered. With these assumptions, the solution to the
optimal power flow problem is calculated.

Secondly, the physical network structure described by (2.5) is extended with the tran-
sient reactances connecting the generators’ internal and terminal nodes, and equivalent
impedances for the loads. Let us denote the admittance matrix of this extended struc-
ture Y ′.

Third, this extended circuitry undergoes Kron-reduction as discussed in Section 2.1.1:
assuming that the nodal admittance equation is in the form:

Y ′







Vg

V t

Vl






=









t

l






=







g

0

0






(2.10)

where Vg,V t and Vlare voltages, and g, t and lare current injections at -in order-
generator internal nodes (between the reactance and the voltage source in the gener-
ator model), generator terminal nodes (on the other side of the generator reactance),
and load nodes. However, since there is no current injection at transmission lines (thus
neither at terminal nodes), nor at load nodes (since they are modeled as constant
impedance to the ground) tand lare always zero, and so (2.10) can be Kron-reduced
to

YENVg = g (2.11)

where YEN ∈ CNg×Ng is the effective admittance matrix where Ng is the number of
generators in the power grid. In it, every pair of generator is connected by an effective
admittance YEN

j
[49, S. 4.1].

Finally, this reduced admittance matrix is used for defining parameters for (2.2) as
follows:

AEN

= P∗

g,
− |E∗


|2 Re(YEN


)

KEN
j
= |E∗


E∗
j
YEN
j
|

γEN
j
= Arg(YEN

j
) −

π

2

(2.12)

The star symbol in (2.12) denotes values of the steady-state operation: P∗
g,

is the
th generator’s steady-state active power injection, and E∗


is the th node steady-state

internal voltage. Indeed, these are the values static to the network’s operation in it’s
equilibrium point, the ones that are calculated in the first step of building the EN model
by solving the power flow problem.

In practice, the open-source power system simulation software toolkit MATPOWER’s
power flow solver runpf [61, S. 2.4.2, S. 4.4] was generally applied to power system
models from [50] to obtain aforementioned steady-state data in all cases.
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2.1 COUPLED OSCILLATOR REPRESENTATION OF POWER SYSTEMS

In the EN model, every node of the reduced network (that is, every generator) is mod-
eled as a second order oscillator, and so inertia constantsH and damping constantsD

in (2.2) are both positive. These mechanical parameters most depend on the physical
design of the generators in question, and how they are estimated [49, S. 5] once again
lies outside the scope of this paper. In practice, the pre-defined values in [50] have been
used for our purposes.

Figure 2.5: EN model oscillator representation of the illustratory network in Figure 2.4. Second
order oscillator nodes 1 and 2 correspond to points marked with a brownish 1 and 2 in the
electric circuit representation in Figure 2.4. Cropped from [49, Fig. 1].

2.1.4 The Structure Preserving (SP) Model

The structure preserving model (SP model for short) was originally proposed by [6]. It
seeks to describe the dynamic behavior of loads by considering them as first-order os-
cillators, by themeans of which building an oscillator model that preserves physical net-
work structure is possible. Building said oscillator model involves the following steps.
First, similarly to the EN model, assumptions about the fixedness of network structure
and constant power demand aremade, and the solution to the optimal power flow prob-
lem is calculated. Secondly, much like with the EN model, an extended circuitry is built
with generators’ terminal reactances-, and load nodes added. Then, dynamic models
for each load’s power consumption is derived in the form:

Pl,(t) = P∗l, +
D

ωR

.
δ(t) (2.13)

where Pl,(t) is the th load active power demand, P∗
l,

is the th load steady-state active
power demand, D is a linear constant, ωR is the reference frequency, and

.
δ(t) is the

th node voltage phase shift as compared to a common reference node. Notice that
(2.13) is but a linearization of (5.3) around the steady state power demand P∗

l,
, which is

acceptable for the purposes of transient stability analysis, since only small deviations
from the steady-state frequency are considered [49, S. 4.2].

Substituting H = 0 into (2.2), and reinterpreting D as a linear constant of a load’s
active power demand’s dependence on the load’s voltage frequency leads to an equa-
tion much like (2.13): a first order oscillator. Indeed, (2.2) will be used for building the
dynamics for the SP model’s loads (modeled as first order oscillators with H = 0) and
generators (modeled as second order oscillators with H ̸= 0) as well, even though the
constants from (2.12) need to be redefined.
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2.1 COUPLED OSCILLATOR REPRESENTATION OF POWER SYSTEMS

Unlike in (2.10), no assumptions about zero power injections at load- and generator
terminal nodes (again, bothmodeled as first order oscillators) can bemade so the nodal
admittance equation goes

Y ′







Vg

V t

Vl






=







g

t

l






(2.14)

Also, since the SP model foresees no network reduction (preserving the physical net-
work structure in the oscillator model is a major advantage with this model after all),
above admittance matrix is indeed the one that is used for the redefinition of the pa-
rameters of (2.2), thus Y ′ = YSP

Then, aforementioned parameters are defined as follows:

ASP

=

(

P∗
g,

for generator internal nodes

− P∗
l,
− |V∗

−Ng
|2 Re(YSP


) for load nodes

KSP
j
=

(

|E∗

V∗

m(YSP

j
)| for generator internal nodes

|V∗
−Ng

V∗
j−Ng

m(YSP
j
)| for load nodes

γSP
j
=







0 for generator internal nodes

Arg(YSP
j
) −

π

2
for load nodes

(2.15)

where P∗{g,l}, is the th node steady-state active power injection/consumption (gor lin
the subscript denote that the node in question is modeled as a generator (second order
oscillator) or a load (first order oscillator) in the oscillator model respectively, and only
serve clarity), E∗


is the th node (given that it is a generator) steady-state internal volt-

age, V∗


denotes the th node’s steady-state (terminal) voltage, and Ng the number of
generators. For the indices  and j it is assumed that that nodes are numbered as shown
in Figure 2.6, starting with all generator internal nodes, followed by all terminal nodes
in the same order, so that the generator internal node with index  is only connected to
the generator terminal node  + Ng.

As with the ENmodel, values of (2.15) denoted by a star symbol are values generated
by solving the optimal power flowproblem, in our case by utilizing [61] and [50]. Likewise,
mechanical parameters of (2.2) H > 0 and D > 0 have to be estimated based on the
machine’s design parameters in case of generators. Since loads are modeled as first
order oscillators in the SP model, H = 0 is true for them, whereas D has to be chosen
so that (2.13) holds well. Again, we have been relying on [50] for these values.
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Figure 2.6: SP model oscillator representation of the illustratory network in Figure 2.4. Sec-
ond order oscillator nodes (generators marked by a light red filling) 1 and 2 correspond to
pointsmarkedwith the samebluish numbers in the electric circuit representation in Figure 2.4.
Nodes 3, 4, and 5 are first order oscillator nodes (loads marked by a light blue filling) corre-
sponding to the two generator terminal nodes, and the actual load node in the electrical circuit
representation marked by the same blue numerals in Figure 2.4. Cropped from [49, Fig. 1].

2.1.5 The Synchronous Motor (SM) Model

Applying the Kuramoto model to an utility power grid can be attributed to [19]. In it, both
generators and loadsweremodeled as synchronousmachines; indeed [49, S. 4.3] refers
to an oscillator model of such topology as the synchronous motor model, or SM model
for short.

Just like in the ENmodel, all nodes aremodeled as second order oscillators, and thus
building the SM model is analogous to how the EN model is built. However, because in
this case loads are also considered as synchronous generators (of negative power gen-
eration: motors, that is), the extended admittance matrix Y ′ has to be further extended
to Y ′′ in that transient reactances for the generators modeling loads are considered as
well. Then, much like in (2.10):

Y ′′







Vg

V t

Vl






=







g

t

l






=







g

0

0






(2.16)

which gets Kron-reduced similar to as in (2.11):

YSMVg = g (2.17)

Then, this reduced admittance matrix is used for defining parameters for (2.2) analo-
gously to (2.12)

ASM

=

(

P∗
g,
− |E∗


|2 Re(YSM


) for nodes modeling generators

− P∗
l,
− |E∗


|2 Re(YSM


) for nodes modeling loads

KSM
j
= |E∗


E∗
j
YSM
j
|

γSM
j
= Arg(YSM

j
) −

π

2

(2.18)

where P∗{g,l}, is the th node steady-state active power injection/consumption (g or l
in the subscript only denote whether the node in question is modeling a generator or
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a load of the original physical network), and E∗


is the th node steady-state internal
voltage.

Steady state values andmechanical constants are obtained bymeans of [61] and [50]
just as in Section 2.1.3.

Figure 2.7: SM model oscillator representation of the illustratory network in Figure 2.4. Second
order oscillator nodes 1, 2 (representing generators) and 3 (representing a load) correspond to
the samenumberswritten in a greenish color in the electric circuit representation in Figure 2.4.
Cropped from [49, Fig. 1].

2.1.6 Comparison of Oscillatory Models

Features of the oscillator models overviewed in Sections 2.1.3, 2.1.4, and 2.1.5 are col-
lected into Table 2.1.
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Features
Oscillator models

EN SP SM

Oscillator
model structure complete graph preserved complete graph

Generators modeled
as (electrical model)

constant voltage behind
purely transient reactance

Loads modeled as
(electrical model)

const. volt. &
trans. react. (2.13)

const. volt. &
trans. react.

Generators modeled
as (oscillator model) second order oscillator

Loads modeled as
(oscillator model)

set of effective
admittances

first order
oscillator

second order
oscillator

Number of first
order oscillators 0 Ng+ Nl 0

Number of second
order oscillators Ng Ng Ng+ Nl

Total number of
oscillator nodes Ng 2Ng+ Nl Ng+ Nl

Number of edges
(oscillator model)

Ng(Ng−1)
2 structure dependent (Ng+Nl)(Ng+Nl−1)

2

Steps involved in
model building

OPF, Y ′, Kron,
AEN


, KEN
j

, γEN
j

OPF, Y ′,
ASP


, KSP
j

, γSP
j

OPF, Y ′′, Kron
ASM


, KSM
j

, γSM
j

Table 2.1: Comparison of the EN, SM, and SPmodels. "OPF" refers to having to solve the optimal
power flow problem.

2.2 Viability Theory and Theory of Barriers

In [46, Sec. 2.3] we have given a brief overview of the origins and underlying consid-
erations of viability theory. In it, we have demonstrated that an uncertain, dynamical
system subjected to engineering constraints —think of equipment tolerances— can be
formulated as



















.
 = ƒ (,d)

t=0 = 0

y = h()

g((t)) ≤ 0 ∀ t ∈ [0, T], ∀  ∈ {1, . . . , p}

(2.19)

where

•  = (t) denotes a state vector over state space X
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• y = y(t) denotes an output vector over the output space Y .

• ƒ (,d) is a single valued map from some (Ω ⊂ X )→ X

• h = h() = h((t)) denotes the output function of the system.

• d = d(t) is an (external) disturbance input vector over the disturbance space D

• g = g() = g((t)) is the th real-valued constraint function.

• p is the number of space-state constraints on the examined system

• T > 0 ∈ R is some arbitrarily chosen point in time

Figure 2.8: Block diagram of a system described in (2.19)
.

Definition 1 (Constraint set). The constraint set is the set of all points in X so that all
constraints are met [14, Eq. 3.5]:

G = { ∈ X : g() ≤ 0 ∀  ∈ {1, . . . , p}}

Definition 2 (Admissible set). The set of admissible states (or the admissible set) is the
set of all initial states in X for which a disturbance d exists so that none of the system
constraints are violated [14, Eq. 4.1] [4, Def. 1] for all future evolution:

A = {0 ∈ G : ∃ d ∈ D s.t.  ∈ G ∀ t ∈ [0,∞)}

The admissible set is also referred to as the viability kernel in some sources.

Definition 3 (Maximal robust positively invariant set). The maximal robust positively
invariant set (MRPI) is the set of all initial states inX for which no disturbance evolutions
violate any system constraints:

M = {0 ∈ G :  ∈ G ∀ d ∈ D ,∀ t ∈ [0,∞)}

The main motive of what follows revolves around applying the considerations out-
lined in this subsection to the dynamical system modeling a power grid, specifically
finding admissible and invariant sets as a means of making a statement about power
grid stability.
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2.2.1 Theory of Barriers

Having defined the Admissible set in Def. 2 and the MRPI set in Def. 3, the question re-
mains of how one determines what exact points of the state-space fall inside or outside
the sets defined in Def. 2 and Def. 3, given specific system dynamics. In answering this
question , we will be relying on the theory of barriers, and the works of [4, S. 3.1], [18, S.
4], and [14].

Let us consider an uncertain dynamical system ƒ ((t),d(t)) from (2.19). We supple-
ment the constraint set G from Def. 1 with the following sets:

Definition 4 (Constraint boundary set).

G0 = { ∈ X : g() = 0 ∀  ∈ {1,2, . . . , p}}

Definition 5 (Constraint internal set).

G_ = { ∈ X : g() < 0 ∀  ∈ {1,2, . . . , p}}

with G = G0 ∪ G_.
In [46, S. 2.3.1] we have imposed a set of assumptions from [4, S. 3.1], [18, S. 4], and

[14], stating that if they hold, the admissible set A and the MRPI set M are coherent.
Given this case, we might go on denoting their boundaries as ∂A and ∂M, based on
which we further define the following barriers:

Definition 6 (Admissible set barrier).

[∂A]_ = ∂A ∩ G_

Definition 7 (MRPI set barrier).

[∂M]_ = ∂M ∩ G_

Under the referenced set of assumptions, for every initial condition ̄ ∈ [∂M]_ (or
̄ ∈ [∂A]_), there exists an input d̄ ∈ D such that the resulting trajectory d̄,̄(t) ∈
[∂M]_ (or d̄,̄(t) ∈ [∂A]_) remains on the MRPI barrier (or admissible set barrier)
until the integral curve intersects G0.

2.3 Power Grid Decoupling for Set-Based Analysis

Although several models of power grids exist [47][2][6][19], physical arrangement dic-
tates that a common trait of these is that they generally assign system components
(modeled as oscillators) to nodes-, and connections to edges of a mathematical graph.

This usually results in a large scale systemwhere each node’s state is governed by the
swing equation (2.2). However, because of reasons already discussed in [46, S. 2.4.], re-
lying directly on a power grid model for simulation involves solving the swing equations
for all the state vectors for every time step. In other words, if all n nodes’ state vectors
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2.3 POWER GRID DECOUPLING FOR SET-BASED ANALYSIS

are of dimension Rm, then the state vector of the complete grid model —examined as
a whole— would be of dimension R(n·m).

Other than the computationally challenging task of analyzing nonlinear systems of
high-dimensional state spaces, simulation-based approaches also prove to be insuffi-
cient due to the possible environmental disturbances characterizing power systems.
Furthermore, preliminary safety analysis of a power system requires that all possible
states of the system be accounted for [11]. Latter consideration brings us to the sets
introduced in Section 2.2. Admissible set A of Def. 1 and the MRPI set M of Def. 2
together provide information about a given point  in state-space as follows [4, S. 3.2]:

 :











safe if  ∈M
potentially safe if  ∈ A \M
unsafe if  ∈ A

(2.20)

However, obtainingA andM for high-dimensional nonlinear systems is often difficult,
or possible only with certain trade-offs [11].

Thus, decomposing high-dimensional systems into smaller subsystems is desirable,
like how [4] applies the decomposition principles introduced in [12], [40] to a power
system. Decomposition in aforementioned works follows the principle of considering
subsets of the complete system’s state vector as a state vector of a smaller system.
However, some state variables in these subsystems’ state vectors might depend on
other state variables of the big composed system that might have been decomposed
into another subsystem. Such interdependencies between subsystems are accounted
for by assigning each state variable to exactly one subsystem as as state variable, and
considering the variable in question as a disturbance input in other, interdependent sub-
systems. Said disturbance inputs are also called decoupling variables [4] in this context.

Although in [46, S. 2.4.], we have shown the decoupling process on a small exem-
plary grid, here we confine ourselves to outlining the generalized case. Hereby, the un-
decoupled system dynamic can be formulated as

.
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ƒG,2,(δ, ω,{δj ∀ j ∈ N \ {ref}})
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ƒL,1,(δ,{δj ∀ j ∈ N \ {ref})

0






if  ∈ Λ

...





































∀  ∈ ( ∪ Λ) \ {ref}

(2.21)
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where

•  is the set of all generator nodes in the system

• Λ is the set of all load nodes in the system

• ƒG, = (2.3) = [ƒG,1, ƒG,2,]T is the generator dynamics for nodes  ∈ 

• ƒL, = (2.4) = [ƒL,1, ƒL,2,]T is the load dynamics for nodes  ∈ Λ

• N is the set of all neighboring nodes of the th node

• ref is the index of the reference node.

The aforementioned state-interdependence can now be represented in a State De-
pendency Graph, as it was introduced in [40] as in Figure 2.9(a).

(a) (b)

Figure 2.9: Dependency graph for an arbitrary un-decomposed power grid (a), and for the de-
coupled case. (b). Decomposition variables taken as disturbance inputs are denoted by light
color.

A convenient decoupling might be treating each node as an individual subsystem,
considering neighboring nodes’ angle deviations as decoupling variables. The depen-
dency graph of the decomposition can be seen in Figure 2.9(b).

Although through such a decomposition the analyzed systems’ state space dimen-
sion could technically be reduced to 2 and 1 for generator-, and load nodes respectively,
the reduced subsystems are still interdependent on each other through the decomposi-
tion variables. Indeed, the advantages of decomposition is less obvious until it comes
to set-based analysis introduced in Section 2.2. Instead of finding admissible set of
Def. 2, and MRPI set of Def. 3 for the original, high-dimensional system (that would not
be computationally plausible for large systems), lower dimensional A and M can be
found for each decoupled subsystem.

Still, admissible-, and MRPI sets depend on the decoupling variables (a node’s neigh-
bors’ angular deviations), since they —even though treated as disturbance inputs— do
affect the subsystems’ dynamic behavior. Fortunately, we are considering an engineer-
ing application after all, and can rely on inequality constraints introduced in Section 5.1.1
that are constraints on loads’ and generators’ angular deviations (and possibly on gen-
erators’ frequencies, although this thesis only considers the former). In other words, it is
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possible to define angular constraints δmin, and δmx, for each node, thus limiting the
interval of values each decoupling variable can take, based on which the admissible-,
and MRPI sets can be determined as described in Section 2.4.

One advantage of set-based decomposition is that admissible-, and MRPI sets for
the subsystems only depend on nodes directly connected to the node in question (the
number of which in a real-life power grid is typically much smaller than in a full graph),
easing computational complexity. Furthermore, applying the outlined approach to de-
termine safe-, potentially safe-, and unsafe operating state areas (2.20) for each node,
power grid operators need not analyze nodes whose post-fault state lies in the cor-
responding MRPI set, as those -per definition- are guaranteed to ceteris paribus stay
inside the MRPI set, thus between angular inequality constraints as well.

As a consequence of aforementioned benefits, a single node’s or connection’s fault
is less likely to trigger a constraint violation in a node further away, and so power sys-
tem supervision can concentrate their resources on topologically (and possibly also
geographically) well-bounded areas following power system malfunction.

2.4 Determining Set Barriers for Power Grid Analysis

For a system to fulfill rotor angle stability, it must be able to return to its equilibrium
point even if a single machine’s state is changed between some finite constraints. The
barrier trajectory candidates of the admissible, and MRPI set candidates (∂A and ∂M
of Section 2.2.1) are obtained by solving the initial value problemof [14, S. 7] and [18, S. 6]
that we have also formulated in [46, S. 2.5]. There, we defined a function c by combining
the system dynamic  and the adjoint equation λ:

c(,λ) =









λ






=









�

· · ·  · · ·
�T

�

· · · λ · · ·
�T









∀  ∈ {1 . . . n} \ {ref} (2.22)

where n is the number of machines in the oscillatory model,  is the th machine’s
barrier candidate trajectory, consisting of the trajectories lower barrier candidate ⌣,
and/or the upper barrier candidate ⌢, so that  = ⌣, ∪ ⌢,, whereas λ ̸= 0 is the
nonzero adjoint evolution of the thmachine (a vector that at all times stays perpendicu-
lar to

.
), for which δ = δ⌣,∪δ⌢, similarly holds. The differential equation describing

the barrier trajectories is a function of each constraint in the whole system:

.
c =







.


.
λ






=

.
c(c,δmin,δmx,δst) (2.23)

.
c

�

�

�

t=t̄⌣,
= [0 1 − 1 0]T ∀  ∈ {1 . . . n} \ {ref} (2.24)

.
c

�

�

�

t=t̄⌢,
= [0 − 1 1 0]T ∀  ∈ {1 . . . n} \ {ref} (2.25)
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2.5 VALIDITY OF MRPI SETS

where t⌣, and t⌢, are the points in time when the lower and upper barrier candidates
tangentially intersect the angular constraints δmin and δmx respectively, and δst de-
notes a saturation function as described in [4, Eq. 10]:

δsat,j(δ, λ2,, δmin,j, δmx,j) =

=











min(δmx,j,mx(δmin,j, δ −
π

2
sign(λ2,))) for set A

min(δmx,j,mx(δmin,j, δ +
π

2
sign(λ2,))) for set M

(2.26)

Accordingly, (2.24) and (2.25) —or in a narrower sense 
�

�

t=t̄⌣,
= [δmin, 0] and


�

�

t=t̄⌢,
= [δmx, 0]— are referred to as the points of ultimate tangentiality. Given

this initial value problem, the admissible-, and MRPI set barrier candidate trajectories
are obtained by first fixing endpoints thereof in accordance with the criterion in (2.24)
and (2.25), then performing numeric backwards integration of (2.23).

2.5 Validity of MRPI Sets

A valid MRPI set is one that is coherent [18, S. 3.1], and whose envelope is defined by
the barrier trajectory  defined in (2.23), as well as the angular constraints boundaries
δmin, and δmx,. In case of our interconnected second order oscillators (i.e. genera-
tors, as discussed in Section 2.1), two topologically distinct variants of a valid MRPI set
may exist, as shown in Figure 2.10 (please note that from this point on, the machine
index will generally be omitted for the sake of simplicity. Thus, when the reader encoun-
ters notations such as δ, δmin, δmx, ω, , λ, D, H, . . ., they should consider these as
variables related to the th machine: δ, δmin, , δmx,, ω, , λ, D, H, etc.)

• On one hand, a valid MRPI set may look similar to that in Figure 2.10(a), both the
lower-, and upper MRPI barriers intersecting the opposite angular constraint. In
this case, the MRPI set’s envelope is defined by both barriers and both angular
constraint boundaries. This will be referenced to as a type AMRPI set later in this
work.

• On the other hand, a valid MRPI set may look like that in Figure 2.10(b), whose
envelope is defined by one angular constraint boundary, as well as by one MRPI
barrier intersecting said angular constraint boundary twice. Thiswill be referenced
to as a type B MRPI set later in this work.
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2.5 VALIDITY OF MRPI SETS

(a) (b)

Figure 2.10: Examples of valid MRPI sets. (a): Type A. (b): Type B.

However, as we have summarized in [46, S. 3.1], not all barrier candidates fulfill the
criterion of coherence, and may resemble those in Figure 2.11.

Figure 2.11: Phase diagram of a generator, displaying a valid admissible set with MRPI barrier
candidates that do not build a valid MRPI set. The upper barrier candidate represents the
jumping phenomenon, while the lower barrier candidate represents constraint violation.
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2.5 VALIDITY OF MRPI SETS

These invalidities can be attributed to two phenomena: the constraint violation, and
the jumping phenomenon. The former happens if and only if [4, Proposition 1]:

A −
∑

j∈N

Kj · sin
�

δmin, − δj − γj
�

> 0 (2.27)

A −
∑

j∈N

Kj · sin
�

δmx, − δj − γj
�

< 0 (2.28)

is unfulfilled, whereas the jumping phenomenon is due to .
ω undergoing a sign change

as the barrier candidate trajectory intersects the ω = 0 axis. Unlike the constraint vi-
olation, the jumping phenomenon cannot be foreseen by simple algebraic inequalities.
This is because their incidence can be attributed to that  and δ of (2.23) utilize the
signum function in their definitions [46, Eq. 2.31], allowing for an abrupt change. The
ultimate consequence is that finding out whether a set of angular constraints lead to
an MRPI barrier candidate undergoing the jumping phenomenon is actually only pos-
sible by the means of differential equation (2.23). In other words, we cannot make a
certain statement about neither the existence nor the whereabouts of a jumping point
(the point on the ω = 0 axis in the phase diagram where the phenomenon takes place)
unlesswe conduct the numerical integration of (2.23) as far backwards as either a jump
or an angular constraint intersection. A more detailed description of the circumstances
under which the jumping phenomenon takes place can be found in [46, S. 3.1.2].
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OPTIMIZATION PROBLEM TO DETERMINE
MPRI AND ADMISSIBLE SETS 3
3.1 Formulation of the Optimization Problem

As outlined in [39, S. 5.1] and [3, S. 1.2], an optimization problem can generally be formu-
lated as

z∗ = rgmin
z∈Rn

ƒ (z)

s.t. g(z) ≤ 0,  ∈ {1,2, . . . , p}

hj(z) = 0, j ∈ {1,2, . . . , q}

(3.1)

where

• z ∈ Rn is a vector of n design variables.

• z∗ is the optimal design vector.

• ƒ (z) : Rn → R is the goal function (also objective function, or cost function) to be
minimized.

• g(z) : Rn → R,  ∈ {1,2, . . . , p} is a set of p ≥ 0 inequality constraints.

• hj(z) : Rn → R, j ∈ {1,2, . . . , q} is a set of q ≥ 0 equality constraints.

In our case, we will choose z := [δmin δmx]T as the design variable vector, and
define the goal function ƒ (z) so that it returns

ƒ (z) ∈
¨

(−∞,−1] if z is feasible
(−1,0] otherwise

(3.2)

where z is considered feasible if z constitutes valid MRPI barriers ∀  ∈  ∪ Λ \ {reƒ}.
Because δ only ever appears composed with a periodic (sine or cosine) func-

tion in [46, Eq. 2.29-30], there is no point looking for solutions outside of the
[δeq, − π

2 , δeq, +
π
2 ] interval:

δeq, −
π

2
≤ {δmin,, δmx,} ≤ δeq, +

π

2
∀  ∈  ∪ Λ \ {ref} (3.3)

When a valid MRPI set exists for a machine, it necessarily encloses the equilibrium
point:

δmin, ≤ δeq, ≤ δmx, ∀  ∈  ∪ Λ \ {ref} (3.4)
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3.2 DEfiNING THE OBJECTIVE FUNCTIONS

By reformulating (3.3) and (3.4), we arrive at inequality constraints

g1(z) := δeq, −
π

2
− δmin, ≤ 0

g2(z) := δeq, −
π

2
− δmx, ≤ 0

g3(z) := −δeq, −
π

2
+ δmin, ≤ 0

g4(z) := −δeq, −
π

2
+ δmx, ≤ 0

g5(z) := δmin, − δeq, ≤ 0
g6(z) := δeq, − δmx, ≤ 0































































∀  ∈  ∪ Λ \ {ref} (3.5)

Since changing the constraints doesn’t affect the whereabouts of the equilibrium point,
wemight as well take the distances between the angular error constraints, and the equi-
librium angular error as the optimization parameters:

smin = δeq − δmin

smx = δmx − δeq
s = [smin smx]T

(3.6)

and redefine the goal function, as well as the validity intervals from (3.3) and (3.4):

ƒs(s) = ƒ (z) (3.7)

−
π

2
≤ {smin,, smx,} ≤

π

2
∀  ∈  ∪ Λ \ {ref} (3.8)

{smin,, smx,} ≥ 0 ∀  ∈  ∪ Λ \ {ref} (3.9)

Reformulating these we arrive at the inequality constraints:

gs,1(s) := −smin, −
π

2
≤ 0

gs,2(s) := −smx, −
π

2
≤ 0

gs,3(s) := smin, −
π

2
≤ 0

gs,3(s) := smx, −
π

2
≤ 0

gs,5(s) := −smin, ≤ 0
gs,6(s) := −smx, ≤ 0































































∀  ∈  ∪ Λ \ {ref} (3.10)

3.2 Defining the Objective Functions

The initial step towards setting up an optimization problem is finding a suitable objec-
tive function (also referred to as a goal function or cost function). What constitutes a
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3.2 DEfiNING THE OBJECTIVE FUNCTIONS

good objective function partly depends on the sort of optimization problem at hand. As
for us, the following properties of the goal function are desired: ƒs(s)must

1. beR2(N−1) → R, withN being the number of nodes in the oscillatorymodel (nodes
and generators). The goal function’s domain is of dimension 2(N−1) because for
each machine, the angular constraints of both sides s = [smn,, sm,]T ∈ R2

(see (3.6)) are considered as optimization variables, and because one generator
node serving as the reference node is ignored  ∈  ∪ Λ \ {reƒ}.

2. prefer maximal MRPI sets, that contain themaximal number of points of the state
space.

3. privilege global validity to local optimality. Global validity hereby denotes that for
all nodes of the oscillatory model, optimization parameters —and thereby angular
constraints as in (3.6)— are so, that valid MRPI sets —as in Section 2.5— exist
for all nodes but the reference node. Local optimality means that aforementioned
optimization parameters are instead so, that a subset of nodes possess MRPI
sets that are maximal as in Point 2.

4. preferably be able to indicate when global validity —as in Point 3— is reached.
This is important so that it can be determined whether a set of valid MRPI sets
has been found, in which case optimization parameters might be readjusted for
optimization for MRPI set size. In fact, ƒ (s) has been defined in (3.2) so that this
point is fulfilled.

5. preferably is applicable to MRPI sets of both type A and B as in Figure 2.10.

6. preferably be computationally inexpensive and easily parallelizable.

7. preferably be continuous, so that continuous optimization methods can be ap-
plied.

3.2.1 Further Considerations

The property of continuity in Section 3.2 Point 7, however, can not be generally fulfilled
with our problem setup.

This is due to Point 4 and especially (3.2), because of which no matter what metric
we choose as a measurement of barrier candidates’ goodness, a change in the validity
of a single MRPI barrier candidate might result in a sudden step of the goal function’s
value.

Let us consider the following short example for better comprehension. Given that
(3.7) currently evaluates to some value ƒs(s) < −1, we can assume —by the defini-
tion of the goal function (3.2)— that the current set of optimization variables (angular
constraint deviances as in (3.6)) build valid MRPI sets for all oscillator nodes, with the
possible exception of the reference node. Then, let us consider that the vector of op-
timization variables s is being continuously modified. If during this modification one
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3.2 DEfiNING THE OBJECTIVE FUNCTIONS

of the MRPI barrier candidates suddenly turns invalid, then —again by (3.2)— the goal
function must now suddenly evaluate to a value ƒs(s) > −1.

In above example it was merely considered that continuous change of the optimiza-
tion variables s might result in the sudden (in)validity of an MRPI barrier candidate. In
the following subsections it will be shown in what circumstances is this indeed a pos-
sibility.

Constraint violation

Valid MRPI barriers should tangentially intersect with one of the angular constraints
and cross either that same constraint, or the opposite one. However, for some s values,
backwards integration of (2.23) results in an MRPI barrier candidate that violates the
angular constraint by spreading outwards of the [δmin,, δmx,] interval as discussed
in [46, Sec. 3.1.1].

The described phenomenon only ever occurs if inequalities (2.27) and (2.28) are not
fulfilled [4, Proposition 1]. However, since in practice numerical backwards integration of
(2.23) is to be carried out anyway once constraint violation is excluded, it does not con-
stitute great computational effort to -instead of relying on conditions (2.27) and (2.28)-
actually perform said integration, while checking whether the resulting δ component in
c is outside of the constraint bounds after a single time step.

That being said, latter method does require more computations, as all four compo-
nents in

.
c in (2.23) have to be evaluated, so it might worth checking whether the above

necessary conditions are met for a given s vector first after all.

Jumping phenomenon

In [46, Sec. 3.1.2] we have described how the jumping phenomenon can solely be at-
tributed to a signum function undergoing sudden value change due to the sign change
of λ2. It is to be noted that discontinuity was understood in time dimension, whereas
here we are discussing how the objective function might undergo a sudden or abrupt
change as it’s parameters are changed continuously. In other terms, it is the objective
function’s continuity that is assessed.

That being said, the statement can be made that continuous adjustment of the op-
timization vector s can lead to a sudden change in the validity of an MRPI barrier can-
didate, and with that, an abrupt change in the objective function’s value as well. The
argumentation is as follows:

Each barrier candidates’ evolution is ultimately described by the angular constraints,
and by the differential equation (2.24). Would δsat not be present in these equations,
would state variables (t − t̄) and λ(t − t̄) change continuously (for some fixed t) as
s (and through (3.6), the angular constraints) undergoes continuous change.

However, we described in [46, Sec. 3.1.2] that because of the sign function in δsat in
(2.26), c is prone to undergoing sudden change in the time domain at some time t̃.
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3.2 DEfiNING THE OBJECTIVE FUNCTIONS

Let us consider a generator in the oscillatory model with a valid type B (see
Figure 2.10) MRPI set, and observe that it’s barrier candidate intersects the ω = 0 axis
without changing direction.

Because δsat is ultimately also a function of the angular constraints, it is possible to
continuously adjust s until the λ2 sign change at ω = 0 is introduced to the aforemen-
tioned barrier candidate, resulting in invalidity due to the jumping phenomenon.

3.2.2 Set Area Optimization Method

From Section 3.2 Point 2, a convenient approach would be defining the goal function as

ƒs (s) =







0 if ∃  ∈  ∪ Λ \ {reƒ} s.t. M = ∅
1

(N−1)
1

Aavg

∑

 ̸=reƒ −A(M(s)) otherwise
(3.11)

where A(M) returns the area enclosed between the MRPI barrier(s) and the angular
constraint(s) for the th machine, that is, the area marked with blue in Figure 2.10. The
total number of nodes in the system is denoted by N, and Aavg is an experimental value
considered as the average MRPI set area, used to norm the function output approxi-
mately to the range defined in (3.2).

Once valid MRPI sets exist for all (but the reference) machine, and we know the cor-
responding MRPI barriers, summing up the area of said sets is as straightforward as
calling MATLAB’s polyarea function on a set of barrier points that are the result of nu-
merically solving (2.23) with the right {δmin,δmx} values.

Indeed, when researching the applicability of the set area method for finding valid
MRPI sets, an implementation in MATLAB has been realized, supporting the method’s
capability to optimize for maximal MRPI set size. That is, if the initial optimization vari-
able vector s0 builds valid MRPI sets for all nodes (with the possible exception of the
reference node), the optimized vector ssol generally brought bigger MRPI sets.

However, this method’s applicability proves to be insufficient when starting with op-
timization variables s0 that do not result in valid MRPI sets for all the nodes. Before
discussing why this might be, let us take a look at the flowchart of the proposed imple-
mentation in Figure 3.1.
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3.2 DEfiNING THE OBJECTIVE FUNCTIONS

Figure 3.1: The area method for searching for a set of valid MRPI sets. The purple variable
name denotes a global variable that is persistent between subsequent calls to the objective
function.

Aforementioned figure shows numbered blocks, explanations to which are as fol-
lows:

1. First, initialization of variables take place.

2. Then, we enter a for loop in which all the machines will be examined, except for
the one that represents the infinite bus. Optimization variables (that is, the lower-,
and upper constraint candidates) are read, and checked whether they fulfill (3.8).

3. If not, then their value will be saturated to cstrDeLm, that is, π2 , and penty
will be changed by an amount proportional to the amount by which the deviation
limitwas violated by the constraint candidate on hand. This is to discourage the su-
perimposed optimization algorithm searching in that invalid direction, while main-
taining the monotonicity of the objective function.
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3.2 DEfiNING THE OBJECTIVE FUNCTIONS

4. If (3.8) was met, then the constraint deviation smin, or smx, is set to the corre-
sponding optimization variable.

5. Then, angular constraints are calculated. This has to be done for all machines
at once, because subsequent function calls take in all the constraints at once.
This is due to that the barrier dynamics (2.24) depends on each and every angular
constraint {δmin,δmx}. In other words, subsequent steps cannot be executed
sequentially with steps up to this point.

6. That being said, we enter a new loop inwhich for eachmachine (with the exception
of the referencemachine) we determine whether the supplied angular constraints
build a valid MRPI set.

7. If this is not the case, we set the th element of the area array to zero, indicating
that the current optimization variables (or rather the angular constraints derived
from them in the previous point) do not build a valid MRPI set for the th machine.

8. If the current value of the optimization variables do build a valid MRPI set for the
th machine, then the area of the th node’s MRPI set is appended to the area array.
Furthermore, the validSetCnt variable is incremented by one, so that after the loop,
it includes the number of nodes at which the current optimization variables built
a valid MRPI set.

9. Then, it is checked whether any valid MRPI sets have been found at all, and if not,
the current iteration of the optimization returns with the initial goal still being zero.

10. Otherwise, the areas of all found validMRPI sets are summedup, and their average
is taken.

11. It is examined whether global validity is reached with the current set of optimiza-
tion parameters, that is, whether they build validMRPI sets for all but the reference
machine. This is to ensure Section 3.2 Point 3.

12. If not, the current value of the goal function is calculated as follows: the average
MRPI set area is multiplied by the number of non-reference machines, in a way
estimating a total MRPI area sum if all nodes would be subject to a valid MRPI
set. Then, the real total MRPI area sum gets divided by this value, resulting in a
value that is basically the percentage of non-reference machines that posses a
valid MRPI barrier. This gets further multiplied by penalty so that the return value
of the objective function gets gradually more and more spoiled as optimization
variables move further away from the set defined in (3.8). Finally, the negative of
this value is returned as the value of the current iteration of the optimization, as
the optimization problem is generally formulated as a minimization task.

13. If global validity has been reached, it is checked whether global (as in persistent
between multiple calls to the objective function) variable fGlAvgArea —for "first
global average area"—has already been set to any value other than it’s initialization
value 0.
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14. If not, then this variable is set to the current MRPI area average. From this point
onwards, fGlAvgArea will never again be modified, and thus will always contain
the average area of MRPI sets when global validity was initially reached.

15. Finally, the objective function returns the negative of the ratio between the average
MRPI area in the current iteration of the optimization and the average MRPI area
when global validitywas reached. Intuitively, this is ameasure of howmuch further
(in terms of average MRPI area) the optimization has come since reaching global
validity. In other words, this is where Section 3.2 Point 2 is ensured.

As previously mentioned, this method does not work too well for cases in which the
initialization vector of optimization variables s0 do not build MRPI sets already. This
can be attributed to that the metric chosen for the definition of the objective function
(MRPI set area) is one that is nonexistent for nodes that do not posses a valid MRPI
set. Although a bit of a tautology, what this means in practice, is that the optimization
algorithm —to rely on an anthropomorphism— can not iterate but only guess towards
better s values.

In other words, set area optimization does not fulfill Section 3.2 Point 7, because
ƒs(s) would only take on N− 1 discrete values between [−1,0), (N being the number
of nodes in the system) if it wasn’t for the penalty variable.

Nonetheless, once global validity —as in Section 3.2 Point 3— is reached, aforemen-
tioned disadvantage ceases to exist and so ƒs(s) becomes at continuous at least on
subsets of the [−∞,−1) interval.

A big advantage of the set area method is that it is able to work with both type A and
type B MRPI sets as described in Section 3.2 Point 5 — a property that, as we will see
in Section 3.2.3 can not always be fulfilled.

On the other hand, when it comes to computational complexity and parallelization
as in Section 3.2 Point 6, the set area method may not be the most efficient one. Even
though some parts of the process —such as the actual area calculation— are well paral-
lelizable, a prerequisite is knowledge of the barrier candidates, which must be obtained
through computationally rather expensive numerical integration anyway.

Another drawback of the set area method is that once global validity is reached, the
definition of the objective function becomes rather ambiguous in that it is hard to pre-
cisely define what exactly Aavg in (3.11) must be. In the above implementation it has
been considered as the average of the actual MRPI set areas in the system at the time
when global validity has been reached, even though it could be defined otherwise. For
example, some estimation based on the current angular constraint boundaries, or other
experimental constant could be used.

3.2.3 Span Optimization Method

Although the area method described in 3.2.2 proved to be working for maximizing the
area of the MRPI set when the initial set of design variables (angular constraints) al-
ready define a valid, coherent MRPI set for all the nodes other than the reference node,
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it was less successful at finding such values when the initial design variables do not
build valid MRPI sets for most nodes. It has been shown that this was due to the objec-
tive function’s discontinuity in the globally invalid region. Besides, it has beenmentioned
that the area method is computationally rather intensive.

Thus, an attempt was made at eliminating aforementioned issues by constructing a
method that relies on a different metric to the MRPI set size, and which will be referred
to as the span method.

The spanmethodmakes a simplification in that it disregards Section 3.2 Point 5, and
only considers type A MRPI sets as valid. The objective function thus makes the (in-
deed inaccurate) assumption that a valid MRPI barrier —going backwards in time from
the point of ultimate tengentiality— must first intersect the opposite angular constraint
boundary, followed by the ω = 0 axis.

Hence, the spanmethod considers the first position where theMRPI candidate trajec-
tory intersects the ω = 0 axis when integrating backwards in time. This would be δj,U,
and δj,L, for the th node’s upper-, and lower trajectory candidate respectively as shown
in Figure 3.2. The fundamental assumption hereby is that if the first ever crossing of
the ω = 0 axis falls outside the region of permitted angular constraints, then the MRPI
barrier candidate must have crossed the closest angular constraint boundary before
(again, integrating backwards in time) that.

Figure 3.2: Graphical representation of the span method’s workings.
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To put it another way, it is assumed that if the candidate trajectory does not touch
the ω = 0 axis between δmin, and δmx,, then it must be valid as

• it must reach the opposite constraint, that is, δmin, in case of the upper barrier
candidate, and δmx, in case of the lower one.

• no jumping can occur, because the jumping phenomena is unique to ω = 0.

As with the set area method, a MATLAB implementation of the span method has
been realized. The inner workings of the corresponding objective function is shown in
Figure 3.3.
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Figure 3.3: The span method for searching for a set of valid MRPI sets. The purple variable
name denotes a global variable that is persistent between subsequent calls to the objective
function.

Further explanations for the numbered blocks in above figure are hereby given, serv-
ing as a kind of walk-through:

1.-5. These steps are identical to steps 1.-5. in the set area method in Figure 3.1.
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6. In the next for loop , δ0,U,, and δ0,L,, that is, the upper and lower ω = 0 axis
intersections are determined.

7. Then, it is checked whether the points of ω = 0 intersection are between the
lower-, and upper angular constraints that have been determined at the end of the
previous for loop.

8. Is this not the case, then the negative of the procentual distance between the bar-
rier candidates’ point of ultimate tangentiality (smin, or smx,) and the barrier
candidates’ point of the first omeg = 0 axis intersection (δ0,L, or δ0,U,) as
related to the whole distance between the constraints (smin, and smx,) are cal-
culated. The absolute value of expression will be further referred to as the span of
the type A MRPI barrier candidate in question. By using procentual values, all dis-
tances are normalized to the same interval, preventing bigger absolute distances
to overshadow smaller ones of other nodes.

9. Otherwise, it is checked whether global validity (as in Section 3.2 Point 3) has
already been reached.

10. If not, then dstLoer or dstUpper is set to -1, that is, negative 100%, denoting
that the corresponding barrier trajectory crosses 100% of the distance between
smin, and smx,. This is to ensure Section 3.2 Point 3, that is, to privilegize global
validity. In other terms, the algorithm will not be seeking better MRPI barriers until
all barriers are valid type A barriers, which means that all but the reference node
possesses valid MRPI sets.

11. If global validity has been reached, then another check is carried out to deter-
mine whether global variable ƒGSpnU (ƒGSpnL) (for "first global span up-
per (lower)", denoting the absolute value of the span of the th node upper (lower)
barrier candidate’s span right after global validity has been reached) is still initial-
ized to zero. If so, the current span is being assigned to the variable in question.

12. Then, or if ƒGSpnU (ƒGSpnL) was already set before, the procentual value
is calculated much like in Point 8, but instead of the distance between the current
constraints, the distance of when global validity has been reached is taken as a ba-
sis. This is necessary, because otherwise a given barrier candidate’s contribution
to the objective function value would not change if the barrier candidate crosses
theω = 0 axis at the same procentual span value, regardless if the span distance
got bigger or smaller in absolute terms. For example, if a barrier intersected the
opposite constraint boundary exactly in ω = 0, then that barrier’s contribution to
the objective function value (see Point 8 above, and spanUpper and spanLower in
Figure 3.3) would be −1. However, if the span of the examined barrier (and pos-
sibly the MRPI set area) got bigger, but the barrier’s ω = 0 axis intersection point
would still lie exactly on the opposite constraint boundary, the barrier’s contribu-
tion to the objective function value would still remain −1.
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13. These procentual values are then being appended to the goal function’s return
value go. The reason for relying on these procentual values instead of absolute
ones is that we are mostly interested in finding any valid MRPI sets, and are not
interested in further optimization with this span method.

14. If global validity has been just reached in the current iteration of the optimization
algorithm, the global (as in persistent betweenmultiple calls to the objective func-
tion) variable globalVal is set to 1, and won’t be further modified in subsequent
iterations. Otherwise it is set to some value other than 1.

15. Finally, the go value is multiplied by the penalty multiplier, and is averaged to
the number of non-reference nodes’ two (minimum and maximum) constraints
per machine.

Once objective function returns -1, then a set of constraints has been found that cor-
respond to a set of valid MRPI barriers for each machine, and the optimization halts.

Formally, the span method’s objective function could be formulated as

ƒs (s) =







1
N−1

∑

 ̸=reƒ span(s) if ��∃  ∈  ∪ Λ \ {reƒ} s.t. MA

= ∅

1
N−1

∑

 ̸=reƒ (mx(span(s),−1)) otherwise
(3.12)

where span is as described in Point 8 of the description of Figure 3.3.MA

denotes the

th node’s type A MRPI set, and N is the number of nodes in the system.
Even though the span method does not set out to fulfill Section 3.2 Point 2 directly

like the set area method does, it still fulfills it to some extent, albeit with restrictions:

• Because of howMRPI barrier candidate dynamics tend to work, it is theorized that
barrier candidates that evolve further away —going backwards in time— from the
point of ultimate tangentiality tend to intersect the opposite angular constraint
boundary at a higher |ω| value, resulting in a greater MRPI set area (given that the
node in question has another valid type A barrier). If this assumption holds, then
the span can indeed be a viable metric.

• However, aforementioned assumption definitely does not work the other way
around, because we know from experience that perfectly valid type A MRPI sets
exist that do not cross the ω = 0 axis at all. These, although being perfectly valid
type A barriers, would not be considered by the proposed algorithm.

• Another drawback is that the span method disregards Section 3.2 Point 3 and
type B MRPI sets altogether, some of the MRPI sets cannot even be examined for
optimality.

Advantages to the span method mostly have to do with Points 6 and 7 of Section 3.2:
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• As for the computational costs, the span method is indeed cheaper than the set
area method, because no costly area calculation has to be done. In fact, back-
wards integration gets broken as the barrier candidate intersects the ω = 0 axis,
and so the span can be directly calculated from the last δ value of the integration.

• Also, the objective function is —although not continuous in the mathematical
sense because of the reasons described in Section 3.2.1— it at least takes on
many values between [−1,0).

3.3 Obtaining the Equilibrium Point

We set out to finding a frequency-synchronous state of all generators of the examined
system, so that their angular velocities are equal.

.
δ = . . . =

.
δn ∀  ∈  ∪ Λ (3.13)

Furthermore, since—aswe have discussed in Section 2.1—we are considering the node
with index ref as a reference node with a constant angular deviation of 0

ωreƒ =
.
δreƒ = . . . =

.
δ =

.
δ+1 = . . . = 0 (3.14)

Considering said state variables of (2.1), the equilibrium point is a set of points (gener-
ator states)
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(3.15)

so that everything else left unchanged, each and every generator’s angular deviation
also remains unchanged. By substituting (3.15) into (2.3) and considering that the very
definition of an equilibrium point is that the system dynamic remains zero when evalu-
ated at that point we get:

.
eq,|=eq =







0

0






(3.16)

Since the MRPI sets -if exist- must enclose the equilibrium points by definition, the
vector of equilibrium points δeq will serve as a starting point for finding valid MRPI sets
in our examinations.

For a given system, the equilibrium point is found by solving equation (3.16) for all
machines:
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.
eq =







.
1

.
2






= 0 (3.17)

Because
.
δ = ω in (2.3), and because

.
δ = 0 in (3.15), it follows that ω = 0 can be

substituted into (2.3) and (2.4).
Then, for second order oscillators (generators):

(3.16) =







0

0






= (2.3)|ω=0 =







0

A −
∑

j∈N
Kj · sin

�

δ − δj − γj
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∀  ∈  (3.18)

whereas for first order oscillators (loads):
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j∈N
Kj · sin
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δ − δj − γj
�

0






∀  ∈ Λ (3.19)

Merging (3.18) and (3.19) results in a system of nonlinear equations

ƒeq,(δ) = A −
∑

j∈N

Kj · sin
�

δ − δj − γj
�

= 0 ∀  ∈  ∪ Λ \ {reƒ} (3.20)

where ƒeq(δ) = [ · · · ƒeq,(δ) · · · ]T : R(N − 1) → R(N − 1) is the function describing
equilibrium dynamics for all oscillator nodes. In practice, (3.20) is solved by utilizing
MATLAB’s numerical solver for a system of nonlinear equations, fsolve [63].

3.4 Overview of Common Optimization Algorithms

The general form of an optimization problem has already been expressed in (3.1). How-
ever simple this general mathematical formulation may be, conducting the actual opti-
mization process in practice is less profoundly outlined. Nonetheless, it always involves
feeding the objective function to an optimization algorithm, often referred to as an op-
timizer or solver.

To avert future confusion, at this point we would like to clarify optimization-related
terminologies, and their usage throughout this thesis. In the context of optimization

• an optimization method refers to the structure of the objective function. More
specifically, to (3.11) of Section 3.2.2, and (3.12) of Section 3.2.3.

• an optimization algorithm refers to one of the algorithms in the coming subsec-
tions. These take an objective function (the implementation of an optimization
method; see above point) as an argument, and utilize (make calls to) it as dictated
by their inner logic.
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• the optimizer or solver refers to a specific implementation of an optimization al-
gorithm.

The generalized working of an optimizer is shown in Figure 3.4.

Figure 3.4: Optimization flow. Adapted from [35, Fig. 3.1].

The algorithm basically evaluates the objective function (referred to as the “model”
on Figure 3.4) at a number of points in the design space, retrieving the goal function
values, and —with some algorithms— its derivatives in said points. Based on these, the
optimizer makes a proposition about at what points the objective function shall better
be evaluated, so that the minimum of the objective function values evaluated at those
points would be lower than any objective function value seen so far. Accordingly, the
objective function gets evaluated in these propose points, forming a loop that goes on
until some termination condition (maximum iteration count, minimum resolution, time
constraint, etc.) is met. By the time said termination criterion is met, a set of design
parameters are produced, so that the evaluation of the objective function at that point
approximates the function’s actual minimum value.

Now, in what points the objective function gets evaluated, and how the optimizer
makes a proposition about the adjustment of the design parameters for the next itera-
tion, depends on the optimizer itself. Indeed, optimizers come in many varieties: some
work best on a specific set of problems, some are more general, some rely on heuris-
tics, some are more rigorous, etc. Available approaches towards optimization may vary
based on the design vector z, the objective function ƒ (z), and the equality and inequality
constraints g(z) and h(z) respectively [3][10][33][39]. Important considerations there-
fore include the following:

1. Univariate vs. multivariate optimization, as determined by the size of the design
vector.
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2. Global vs. local optimization. Global optimization attempts to find the global min-
imum or minima, whereas local optimization aims to find one or some of the local
optima over all feasible z. Most optimization algorithms are only capable of de-
termining a local minimum without making a statement about global optimality.
Those which do are either custom-tailored to the problem in question or are expo-
nentially difficult.

Figure 3.5: Global minimum, local minima, and inflection point of the goal function of an univari-
ate optimization problem. From [33, Figure 1.6].

3. Convexity of the feasible the objective function, and the constraint functions: for
a convex problem, any local optimum is also a global optimum. Furthermore, for
convex problems, efficient solution algorithms are generally available. As [8] puts
it: “With only a bit of exaggeration, we can say that, if you formulate a practical prob-
lem as a convex optimization problem, then you have solved the original problem.”

4. Constraint types. An optimization problem may either be unconstrained, or sub-
ject to one or more constraints as outlined in (3.1). Constraints might be simple
bounds (also colled box constraints), although linear or quadratic constraints are
also possible, as well as any constraint that can be expressed as a set of equal-
ities and/or inequalities. Generally speaking, unconstrained and box-constrained
problems are the most easy to work with.

5. Differentiability of the objective function. Many of the most efficient algorithms
rely on the gradient of the objective function, although derivative-free approaches
also exist [29], the latter also being known as pattern search or direct algorithms
[33, Chapter 7].

6. Discrete vs. continuous optimization. In general, discrete optimization such as
integer programming or combinatorial optimization is much harder harder than a
similar but continuous problem [29].

7. Static vs. dynamic optimization problems.While the former is one that is invariant
of time and can be defined in the form outlined in (3.1), the latter “involve dynamic
variables whose values change in time” [20, Sec. 15.1].
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8. Deterministic vs. stochastic optimization. In the broadest sense, the latter refers
to any optimization problem that involves randomness and/or probability. In fact,
this definition is —to some extent— ambiguous in that according to [54, Sec. 1.1.3],
stochastic optimization may either refer to

a) an optimization problem where either the objective function and/or the con-
straints are subject to random noise and/or

b) an optimization algorithm which involves randomness in its workings to find
optima of a static or stochastic optimization problem.

Before we can proceed with an overview of optimization algorithms that are relevant
for the purposes of our optimization problem set up in Section 3.1, we ought to classify
it in accordance with the considerations listed above. Our problem at hand is...

• ...multivariate, because the vector of design variables z consists of the minimum
andmaximum allowable angular constraints δmin, and δmx, for every generator
other than the reference generator as defined in Section 3.1.

• ...global, because we are interested in finding the global minimum of the objective
function.

• ...non-convex, because we are unable to make a statement about the convexity of
neither of the two objective functions that we have defined in (3.11) and in (3.12).

• ...box-constrained, because no equality constraints has been set, and the inequal-
ity constraints defined in (3.1) are simple bounds.

• ...not differentiable neither for the set area method of Section 3.2.2 nor for the
span method outlined in Section 3.2.3. With the former, the non-differentiability
can be attributed to the possible discontinuity in (3.11). Although the latter ap-
proach eliminates such an abrupt change in goal function value, the gradient of
the function still cannot be explicitly defined. This is due to that the goal function
is dependent on the span in (3.12), while the span is dependent on theMRPI barrier
candidate trajectory’s first (going backwards in time) ω = 0 axis crossing posi-
tion. However, this position cannot be determined other than through conducting
backwards numerical integration until the crossing itself. The resulting trajectory
is dependent not only on angular constraints of machines that are adjacent to
the observed generator in the oscillatory model, but also of the angular constraint
which it tangentially intersects. Since this applies to each and every MRPI barrier
candidate, a statement about what effect changing a single angular constraint
has on the goal function is analytically not foreseeable, let alone the direction of
greatest change when interacting with multiple constraints.

• ...continuous, because the optimization variables and the goal function are real
valued.

• ...static, because the optimization variables and the goal function value are not a
function of time (as in time elapsing during the optimization process) nor does it
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involve optimizing for a set time period. Indeed, the MRPI set in Def. 3 considers
all future evolutions.

• ...deterministic, because neither randomness nor noise is involved at any point.

Based on the above criteria, common optimization algorithms that might be applied
to the optimization problem at hand include those, that will be introduced in the follow-
ing subsections.

3.4.1 Genetic Algorithms

A genetic algorithm is a gradient-free metaheuristic that is inspired by mechanics of
natural selection and genetics as in Charles Darwin’s theory of natural evolution. It com-
bines a “survival of the fittest” approach with structured yet randomized information
exchange to form a search algorithm [22]. More precisely, the genetic algorithm draws
analogy between structured information and a chromosome, considering elementary
building blocks of said information structure as one would consider genes, whereas
their positions as loci of the chromosome. In its most basic implementation, a fixed-
length byte array is referred to as a chromosome, and a bit or a byte position (or really
the position of any fitting data structure) might be referred to as a locus. In the context
of numerical optimization, each chromosome can be thought about as the binary repre-
sentation of a design vector z from (3.1). With that, each chromosome can be assigned
a fitness level, which is just the objective function value ƒ (z). Having defined the funda-
mental concepts, the basic task flow of a genetic optimization algorithm involves the
following steps [44, Sec. 1.6]:

1. A set of N chromosomes z1 . . .z each of length  are randomly generated. A set
of N chromosomes is further referred to as a population, whereas the population
generated in this step is specifically the parent population.

2. The fitness of each chromosome ƒ (z) is calculated.

3. The following substeps are repeated over and over until N chromosomes, i.e. a
new population —members of which are called children or offspring— is created.

a) Selection. Selects a pair of chromosomes from the parent population in such
a way, that the probability of choosing any specific chromosome shall be pro-
portional to its fitness, i.e. better performing chromosomes have a greater
chance to be chosen. It is worth noting that selection takes place with re-
placement so that the same chromosome might be chosen multiple times.

b) Crossover. Crosses over the previously selected two chromosomes. This
constitutes an operation in which two offspring are created by splitting both
chromosomes at the random locus 1 ≤ k ≤  selected from a uniform prob-
ability, and switching up the genes (bits) up to that point between the two
chromosomes as shown in Figure 3.6. However, a crossover event only oc-
curs with a 0 < pc < 1 crossover probability (typically pc ≈ 0,7[52]); in

42



3.4 OVERVIEW OF COMMON OPTIMIZATION ALGORITHMS

other cases the crossover is considered to be undertaken at the 0th locus,
i.e. the selected chromosomes are left unmodified.

c) Mutation. Mutates the two children chromosomes at each and every locus
with the mutation probability 0 < pm < 1 (generally being very small, with
pm ≈ 0,001 being a rather typical value [52]). The resulting chromosomes
are placed in the children population. If N is odd, any single offspring can be
discarded at random.

4. The current population gets replaced with the new population, or rather the new
generation of the population.

5. Finally, a pre-set termination condition is examined to determine whether the al-
gorithm is to be halted. Typical halting criteria include...

• ...having produced a chromosome with a sufficient fitness level, or...

• ...having reached a pre-defined number of generations, or...

• ...not having been able to come up with an improvement for a pre-defined
number of generations.

Figure 3.6: Genetic operations. Adapted from [52, Fig. 2.].

3.4.2 Particle Swarm

The Particle Swarm optimization algorithm is a gradient-free metaheuristic, which in-
troduces a flock-like dynamic that might —depending on the optimization problem at
hand— help in finding the global minimum over the local minima.

The inner workings of the algorithm are shown in Figure 3.7. The algorithm initially
configures a few constants (whose role we will shortly see), and sets up a population
of candidate solutions, referred to as a swarm of particles. The initial placement of
particles is usually chosen to be uniform throughout the design space. From this point
onward, each particle behaves more or less as an autonomous object in that the th par-
ticle encapsulates its current position z(k) , current speed (k) , its best position so far
p
(k)
best, (called the personal best). Furthermore, it has access to the best position among

the whole swarm so far g(k)best (called the global best), and —in some implementations—
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to the best position among a pre-defined subset (neighborhood) of particles so far (k)best
(referred to as the local best). With that, once the initial swarm has been placed, the
particles’ internal state will be redetermined in each simulation step according to


(k+1)
 = r

�


(k)
 + 1cp

�

p
(k)
best, − z

(k)


�

+ 2c
�


(k)
best, − z

(k)


�

+ 3cg
�

g
(k)
best − z

(k)


�

�
(3.21)

Where 0 <  ≤ 1 is the inertia constant, 1, 2, and 3 are each different random
numbers sampled from a uniform distribution between 0 and 1, whereas cp, cg, and c
are user-defined positive coefficients for the personal , global, and local vectors (the
latter is omitted from, while the latter two are referred to as the “individual” and “social”
vectors in Figure 3.7). Furthermore, 0 < r ≤ 1 is a scale factor that might be constant,
or be decreasing with each subsequent iteration, limiting the movement of particles
more and more as time progresses.
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Figure 3.7: Descriptive flow diagram for pattern search. Note that this flow chart does not ac-
count for the casewhen the optional local best positions are also considered. From [30, Figure
1.].

As time goes by, the particles all get pulled generally towards the best solution so far
(although affected by the randomparameters), and so after enough time, all all particles
tend to gather around a minimum. The bigger the initial swarm size and resolution (i.e.
how close to each other individual particles are), the bigger the likelihood that one ore
more particles would gravitate into the global minimum, pulling in the rest of the swarm.

Finally, the whole algorithm is halted if a termination criteria is reached. These com-
monly include the maximum number of iterations, finding a satisfactory solution, or not
being able to better the best result so far for a predefined span of time [30].
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Figure 3.8: Displacement of a particle during particle swarm optimization. Note that the local
best position, and the resulting vector is not taken into consideration on this figure, as it is
optional. From [56, Fig. 1.].

3.4.3 Pattern Search

Pattern search is a class of derivative-free optimization heuristics. The algorithm con-
siders a base point and a pattern of exploratory points around the base point. The algo-
rithm’s workings are outlined in figure Figure 3.9.

Figure 3.9: Descriptive flow diagram for pattern search. From [26, Chart 1.].

The initial set of design parameters are chosen either randomly or through some
problem-specific consideration. These define the base point, and with that, the ex-
ploratory points around the base point. The goal function value is evaluated in all of
these points (unless they fall outside of optimization constraints). Then, the exploratory

46



3.4 OVERVIEW OF COMMON OPTIMIZATION ALGORITHMS

point with the lowest goal function value is compared with that of the base point. In
case the former is lower than the latter, the whole pattern is shifted, so that this point
now becomes the new base point as shown in Figure 3.10(b), and the process repeats.
However, if the goal function does not evaluate lower in any of the exploratory points
than in the base point, the pattern gets contracted (typically) to half its size as shown
in Figure 3.10(e) Once a pre-defined minimal size of the pattern (accuracy) is reached,
the algorithm stops and the last base point is considered as the proposed optimum
solution.

Figure 3.10: Pattern search applied to a bivariate function. The red star in (a) represents the
minimum of the goal function. From [34, Fig. 1.1].

3.4.4 Simulated Annealing

Simulated Annealing is a probabilistic optimization algorithm that attempts to avoid
local minima for the global optimum through a metaheruistic that is derived from met-
allurgy [60]. The general idea is to simulate a cooling process similar to that of anneal-
ing in metallurgy. Hereby a slow, controlled cooling process ensures that atoms have
enough time for arranging themselves into a low-energy state that is close to the op-
timum. A particularity of the algorithm in question is that under some —probabilistic—
circumstances the best result at any time might be disposed of for a worse set of de-
sign parameters in order to escape local minima. The inner workings of the algorithm
is shown in Figure 3.11.

47



3.4 OVERVIEW OF COMMON OPTIMIZATION ALGORITHMS

Figure 3.11: Flowchart of the simulated annealing algorithm. Adapted from [60, Figure 1.].

Initially, a base point z1 is chosen either randomly, or based on some engineering
consideration. Then, another design vector z2 is randomly selected from the neighbor-
hood of z1. What constitute neighbors of a state is defined by the means of a neighbor-
hood structure, which —for continuous problems like ours— this often means sampling
a Gaussian distribution around z1. Next, it is examined, whether the newly selected
point of the design space is better than the current one, i.e. whether ƒ (z2) ≤ ƒ (z1). If
so, z2) is chosen right away as the current base point. However, even if it is worse than
the current one ƒ (z2) > ƒ (z1), the same might just happen, if acceptance probability
p happens to be higher than a random variable r sampled from a uniform distribution
between 0 and 1. The acceptance probability is calculated based on the Boltzmann prob-
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ability distribution [53, Sec. 10.9] and the amount by which the worst position is worse
than the base point:

p = p(z1,z2, t)







1 if ƒ (z2) ≤ ƒ (z1)

exp
�

− ƒ (z2)−ƒ (z1)T

�

else
(3.22)

With this, the bigger the difference between the proposed position and the base posi-
tion, the closer p gets to 0. Furthermore, p also gets lower and lower as the temperature
T gets lowered. Consequently, the probability of r < p is highest when the temperature
is high, and the trade-off between the positions is small, leaving a fair amount of oppor-
tunity for the algorithm to escape local minima. The sampling of neighboring continues
until a condition —typically an upper limit on sample count— is reached, whereby the
temperature is decreased. Next, the algorithm would examine whether an outer stop-
ping criteria has beenmet. Thismight be the temperature reaching zero, however, many
implementations incorporate a preconfigured number of temperature-resets to facili-
tate better avoidance of local minima. In this latter case, the outer stopping criterion
would be the number of temperature-resets so far. In either case, if the condition is
fulfilled, the best solution candidate z1 so far is returned, and the process halts. Other-
wise a new random candidate is chosen from the neighborhood structure, and the loop
continues.

3.4.5 The Nelder-Mead Simplex Algorithm

The simplex algorithm proposed by [48] is a derivative-free optimization heuristic, just
like pattern search introduced in Section 3.4.3. However, instead of a fixed pattern
around a base point, it considers a simplex (which is the simplest polytope in any di-
mension: a line in 1D, a triangle in 2D, a tetrahedron in 3D, etc.).

Initially, the points are set down either randomly, or according to some problem-
specific consideration. Then, the algorithmgoes through (someof the) following stages,
assuming n − 1 design variables and the goal function ƒ ()
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Figure 3.12:Stages of the TheNelder-Mead simplex algorithm for a bivariate goal function. From
[23, Figure 1.].

1. Sort. The goal function value is evaluated in all n points of the n-simplex. The
point with the best (lowest) value will be further referred to as p1 and the one
with the worst (highest) value as pn (p3 in the bivariate case). Accordingly, the
rest of the points are assigned the denominations p2 . . .pn−1 such that ƒ (p2) ≤
ƒ (p3) ≤ · · · ≤ ƒ (p(n−1)). Furthermore, the position of the centroid of the (n− 1)-
polytope specified by points p1 . . .pn−1 is calculated. In the bivariate case, this
would be the midpoint of the p1p2 line segment, while in the trivariate case, the
centroid of the p1p2p3 triangle, and so on. This point will be further referred to
as p̄.

2. Reflection. The worst-performing point pn gets reflected over the centroid p̄. Let
us denote the resulting point pr as in the leftmost picture in Figure 3.12. The goal
function is then evaluated at this point, and if it is better than the second worst
point, but not better than the best ƒ (p1) ≤ ƒ (pr) < ƒ (pn), then the worst point
pn is replaced by pr , and the whole process gets restarted from step 1. with this
updated simplex.

3. Expansion. If the reflected point is even better than the best point so far≤ ƒ (pr) <
ƒ (p1), then let us obtain an expanded pointpe = p̄+γ(pr−p̄)with the expansion
factor γ > 1 as in the second picture of Figure 3.12 (typically γ = 2, which would
be the same as further reflecting p̄ over pr). If the expanded point is even better
than the reflected point ƒ (pe) < ƒ (pr), then the worst point pn gets replaced
with the expanded point pe. Else, the worst point gets replaced with the original
reflected pointpr . Anyhow, the whole process gets restarted from step 1. with this
updated simplex.

4. Contraction. Now, since the algorithm has not found any better points than pn
so far, an intermediate point on the p̄pr line segment pot = p̄ + ρ(pr − p̄) will
be inspected, with the contraction factor 0 < ρ < 1 (typically ρ = 0.5). This
point is called the outside contraction point. Similarly, the inside contraction point
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is determined by pn = p̄ + ρ(pn − p̄). Let us designate the better of the two
contraction points bypc = rgmin∈{pot ,pn} ƒ (). In casepc is better than the
worst point pn, then the latter gets replaced by the former, and the whole process
gets restarted from step 1. with this updated simplex. This step is illustrated by
third and fourth pictures in Figure 3.12.

5. Shrink. If still no better point thanpn has been found, then the simplex gets shrunk
towards the best point pn. That is, every point of the simplex pm gets replaced
by p′

m
= p1 + σ(pm − p1), with the shrinkage coefficient 0 < σ < 1 (typically

σ = 0.5), as illustrated on the rightmost picture in Figure 3.12. The following step
is then carried out on this updated simplex.

6. Check stop criteria. In this step, it is checked whether a pre-defined stop criterion
(or criteria) of the optimization process has been reached. This can either be some
metric of the simplex, some statistical indicator (often the standard deviation of
the goal function values in all points of the simplex), or the number of iteration
steps so far.
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Figure 3.13: Progression of the Nelder-Mead simplex algorithm in the 2D case. The colored sim-
plices were —in order of progression— the result of: initial condition; expansion; reflection;
reflection; inside contraction; reflection; inside contraction; reflection; reflection; outside con-
traction; inside contraction. Notice that the same algorithm could very well iterate towards
the local minimum instead of the global one if different initial points were chosen. Adapted
from [16, Fig 1.].

3.4.6 Surrogate Optimization

Surrogate Optimization is a class of optimization algorithms whose workings is some-
what different from the general structure shown in Figure 3.4. This is because Surrogate
Optimization (also referred to as SBO - Surrogate-Based Optimization) considers an ob-
jective function, the evaluation of which is computationally challenging, and attempts
to construct a surrogate that is easier to evaluate and hence easier to optimize. For this
to work however, the surrogate function must be a good approximation of the objective
function. Since it is hard to find a good enough model at once, an outer iterative loop
for refining the surrogate model is made use of. This results in the general optimization
problem (3.1) being reframed. As [35, eq. 4.1] formulates:

z(+1) = rgmin
z

U
�

ƒ ()
s
(z)

�

(3.23)
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where z(),  = 0,1, . . . is a sequence of approximate solutions to the original problem
in (3.1), ƒ ()

s
(·) is the surrogate model in the th iteration, and U(·) is a real-valued utility

function that aggregates elements of ƒ ()
s
(·) into a scalar, would the latter be vector-

valued [36].

Figure 3.14: Conceptual process of the surrogate-based optimization. From [35, Fig. 4.1].

Figure 3.14 shows the general flowchart of surrogate-based optimization. This in-
volves sampling the high fidelity, computationally hard objective function at the current
design points in each outer iteration, and then creating or updating a surrogate model
based on the sample points (also referred to as training points) collected so far. The
theoretical construction process of a surrogate model is shown in Figure 3.15. Said pro-
cess generally implies model identification followed by the validation of the identified
surrogate, possibly involving further iterations, would the training points collected so
far not grant sufficient accuracy. What model identification method is exactly utilized is
not predetermined by surrogate optimization per se. Common realizations tend to uti-
lize radial basis function interpolation (for its good performance), although polynomial
regression, Gaussian process regression (Kriging), and neural network based regres-
sion -among others- are also possibilities [35, Sec. 4.2.3]. Physics-based surrogate con-
struction is a further option with some optimization problems, in which instead of pure
mathematical regression, a coarser, less accurate, but also simpler objective function
is chosen as the surrogate model. Hereby the low-fidelity model is either derived from
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3.4 OVERVIEW OF COMMON OPTIMIZATION ALGORITHMS

the high-fidelity one through neglection of parameters, or a less accurate, but computa-
tionally more advantageous representation of physical reality is knowingly chosen.

Having obtained a surrogate model for the th iteration ƒ ()
s

, it can be handed over to
a conventional optimization algorithm [41], such as those discussed so far in previous
subsections.

Figure 3.15: General surrogate model construction flowchart. From [35, Fig. 4.2].

Once a good enough (as determined by a termination condition of the inner optimiza-
tion algorithm inside "Optimize Surrogate Model" in figure Figure 3.14) approximation
of a minimum of the surrogate function is found, the high-fidelity function is once again
evaluated in the corresponding design points z(+1). Then, based on the termination
condition of the outer loop either the optimization process comes to a halt, or a new
round of iteration takes place, incorporating these new point-value pairs into building
a more refined surrogate model. In some implementations, further training points are
gathered around those returned by surrogate optimization, often by sampling a Gaus-
sian distribution around them.
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OPTIMIZATION RESULTS 4
A practical methodology towards finding valid MRPI sets would be adjusting the opti-
mization variable vector sso, while observing the output of the goal function ƒs (sso).
Other than pure heuristics, such a black-box approachmight prove effective because of
the conjecture on barrier phases proposed in [46, S. 3.4], where it was hypothesized that
an MRPI barrier candidate’s stage tends to transition towards a preferred direction as a
single angular constraint boundary is increased or decreased in the oscillatory model.
Aforementioned approach can be implemented in practice by relying on the obejctive
function prototypes outlined in Section 3.2 supplied to nonlinear numerical optimization
algorithms, such as those in MATLAB’s Optimization Toolbox [63] or Global Optimiza-
tion Toolbox [62].

4.1 Implementation of the Optimization Problem

Having found the points of equilibrium, minimization of the goal function ƒs (sso) can
take place. In MATLAB, setup and solution of optimization problems generally involve
the following steps:

Listing 4.1: Pseudocode of carrying out an optimization task in MATLAB.

%1. Defining the objective function.

objectiveFunction = @(s) fs(s, .. );

%2. Setting optimization parameters.

options = optimoptions(@solver, .. )

%3. Executing the optimization.

[s_sol,fs_end] =

solver(objectiveFunction [,s_init], options);

where fs is the goal function, s is the vector of optimization variables, s_init is the
optimization vector’s (s of (3.6)) initial value (the square brackets denote that it is not
always required), s_sol is the vector of optimized optimization variables, solver is a
placeholder for a solver function, and fs_end is minimized the end value of fs after the
optimization, that is, fs_end = fs(s_sol, .. ).

First, a suitable objective function is defined, the handle of which is assigned to
objectiveFunction. Then, a call to optimset( .. ) is made in which options to the
optimization problem are supplied. These include the verbosity of the optimization al-
gorithm, the maximum number of iterations and goal function evaluations, as well as
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the termination tolerance of the solution value [63]. Finally, the objective function and
the optimization options are supplied to a solver function along with an initialization
vector for the optimization variables.

How these steps have been applied to the optimization problem at hand —that is,
finding valid MRPI sets— will be further elaborated in the following subsections.

4.2 Setting Optimization Parameters

What optimization parameters are available for adjustment depends on the optimiza-
tion algorithm chosen, thus it is worth considering the type of optimization algorithms
before anything else.

Because neither of the approaches discussed in Section 3.2.2 and Section 3.2.3 fulfill
Section 3.2 Point 7, and thus not result in a continuous objective function, it is conse-
quent that these objective function candidates are not smooth either.

Smoothness and differentiability is an important property of objective functions, be-
cause a number of optimization algorithms rely on calculating its gradient or Hessian
matrix [7]. However, algorithms applicable to nonsmooth objective functions exist as
well on which we might better rely.

MATLAB’s Optimization Toolbox [63, pp. 2-4] provides us with two options —solvers—
for optimization of nonsmooth functions: fminsearch implementing the simplex algo-
rithm of Section 3.4.5, as well as fminbnd. The latter, however, does not work with mul-
tidimensional optimization variables, and so is unsuitable for us.

The Global Optimization Toolbox presents more solvers, and [62, pp. 1-34] recom-
mends a particular order in which they worth trying. According to this list

1. patternsearch implementing the algorithm outlined in Section 3.4.3,

2. surrogateopt implementing the surrogate-function-based simulation of Section
3.4.6,

3. aforementioned fminsearch of the Optimization Toolbox,

4. particleswarm implementing the particle swarm algorithm of Section 3.4.2,

5. ga implementing a genetic algorithm as described in Section 3.4.1, and finally

6. simulannealbnd implementing the simulated annealing algorithmof Section 3.4.4

should generally bring the best results in this descending order.
Many optimization parameters are common for all aforementioned solvers, including

the display verbosity, the number of maximum iterations (or maximum generations in
the case of the genetic algorithm), maximum run time the function-, and step tolerance.
Also, all of the above solvers but fminsearch can utilize parallel processing on suitable
hardware if the corresponding optimization parameter is set.

Furtermore, a number of optimization parameters are unique to one specific solver,
such as the initial particle population to particleswarm, or the mutation function to ga.
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As for our purposes, no adjustment to any of these parameters proved to bring sig-
nificant advantage as compared to the default values, considering that we are solely
interested in assessing the viability of utilizing optimization algorithms in finding and
optimizing MRPI sets. That being said, parameter Display had to be set to ’iter’ in
order to obtain detailed information about the number of function evaluations in each
iteration on which Section 4.3 relies a lot.

4.3 Executing Optimization

Once optimization parameters have been set, executing the actual optimization in-
volves making a call to the solver, supplying Listing 4.1 with the initial set of opti-
mization parameters (the objective function, the optimization options, and —where
applicable— the initial design vector). Unless stated otherwise, we have executed all
optimization on the IEEE nine-bus power grid as shown in Figure 4.1 and as defined in
the test_system_3gen.mMATPOWERcase file supplied by [50].We further relied on [50]
for oscillatory model generation, attributes of which have been passed to the objective
function.

Figure 4.1: The IEEE three-machine, nine-bus test system. During experimentation, machine 1
served as the infinite bus throughout. From [13, Fig. 4.3.1].
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For the oscillatory representation, the ENmodel of Section 2.1.3 has been considered.
During these tests, two set of values have been used for the initial optimization vector
s_init, these being

[1,36 0,46 1,30 0,83] (4.1)

and

[1,00 0,46 1,30 1,00] (4.2)

The two different initial design vectors are introduced to demonstrate that solvers
relying on it, patternsearch, surrogateopt, fminsearch and simulannealbndmay bring
significantly different results for different start conditions. The other two solvers,
particleswarm and ga —instead of a vector of initial optimization variables— only take
the number of optimization variables as a parameter.

First, the set areamethod of Section 3.2.2 has been supplied as the objective function
to all four solvers mentioned in Section 4.2. The results are summarized in Figure 4.2
and Table 4.1.
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Figure 4.2: Optimization performance of different solvers with the set area objective function,
the EN model, and the 9-bus-system model supplied by [50].
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Solver s_init fd_end #f (gl.) #f Exit event A2 A3

fminsearch (4.1) -0,50 - 65 TolX&TolFun - 64,3

fminsearch (4.2) -0,50 - 65 TolX&TolFun - 80,9

simulannealbnd (4.1) -3,94 789 4232 Fun.Tol. 27,3 58,8

simulannealbnd (4.2) -4,00 56 4083 Fun.Tol. 28,3 56,2

patternsearch (4.1) -0,50 - 99 MeshTol. - 23,4

patternsearch (4.2) -0,50 - 99 MeshTol. - 30,0

surrogateopt (4.1) -0,50 - 200 MaxFun.Eval. - 29,6

surrogateopt (4.2) -0,50 - 200 MaxFun.Eval. - 29,6

particleswarm - -4,18 160 9600 Fun.Tol. 27,0 61,4

ga - -4,18 288 8184 Fun.Tol. 27,0 61,4

Table 4.1: Overview of start-, and end parameters of the optimization sessions from Figure 4.2;
s_init refers to the initialization value of the optimization vector, fd_end to the goal function
value at the end of the optimization, #f (gl.) to the number of objective function evaluations
when global validity was first reached (i. e.when a goal function value of -1 was first encoun-
tered), #f to the total number of objective function evaluation count at the end of the opti-
mization, whereas A2 and A3 the MRPI set area of the second and third —non-reference—
machines after the optimization. The red and green color of the rows represent whether the
optimization session was successful in reaching global validity or not respectively.

Indeed, as described in Section 3.2.2, the set area method does not prove to be par-
ticularly successful at finding validMRPI sets withmost solvers. All solvers —except for
simulannealbnd, particleswarm and ga— resulted in a -0,5 final objective function value
indicating that a valid MRPI set has been found for only one of the two non-reference
machines.

Results of the successful optimization sessions were very similar to each other as
in MRPI area. In fact, particleswarm and ga came up with the exact same results. The
average MRPI size for all successful optimization sessions were around 43, with the
average of the maximal MRPI area sizes just below 60.

Next, the spanmethod of Section 3.2.3 has been triedwith the same solvers and start
conditions as before. The results can be seen in Figure 4.3 and Table 4.2.
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Figure 4.3: Optimization performance of different solvers with the span objective function, the
EN model, and the 9-bus-system model supplied by [50].
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4.3 EXECUTING OPTIMIZATION

Solver s_init fd_end #f (gl.) #f Exit event A2 A3

fminsearch (4.1) -0,96 - 302 TolX&TolFun 54,1 -

fminsearch (4.2) -0,75 - 65 TolX&TolFun 80,9 -

simulannealbnd (4.1) -2,41 209 3769 Fun.Tol. 17,7 64,8

simulannealbnd (4.2) -2,55 46 4486 Fun.Tol. 32,5 38,7

patternsearch (4.1) -1,06 33 285 MeshTol. 13,2 20,8

patternsearch (4.2) -0,97 - 191 MeshTol. 46,1 -

surrogateopt (4.1) -1,22 42 200 MaxFun.Eval. 32,7 42,6

surrogateopt (4.2) -1,45 25 200 MaxFun.Eval. 33,6 39,0

particleswarm - -2,65 120 5600 Fun.Tol. 28,7 54,6

ga - -1,71 429 10346 Fun.Tol. 13,3 20,9

Table 4.2: Overview of start-, and end parameters of the optimization sessions from Figure 4.3;
s_init refers to the initialization value of the optimization vector, fd_end to the goal function
value at the end of the optimization, #f (gl.) to the number of objective function evaluations
when global validity was first reached (i. e.when a goal function value of -1 was first encoun-
tered), #f to the total number of objective function evaluation count at the end of the opti-
mization, whereas A2 and A3 the MRPI set area of the second and third —non-reference—
machines after the optimization. The red and green color of the rows represent whether the
optimization session was successful in reaching global validity or not respectively.

With the span method, results are in all cases better than with the set area method;
in 7 out of the 10 total scenarios, global validity has been reached. The failing ones are
fminsearch, and patternsearch with start condition (4.2).

From a performance aspect, most successful optimization sessions reached global
validity in under 60 objective function evaluations. Exceptions were the 209 evaluations
of simulannealbnd with start condition (4.2), and the 429 evaluations of ga it took to
reach global validity.

As for the goodness of the results, successful optimization scenarios brought similar
results with an average MRPI area of around about 32,4 and an average maximal MRPI
area of 40,2. Outstanding valueswere brought by the—in this regard—worst performing
patternsearch and ga, as well as particleswarm and simulannealbnd with start condi-
tion (4.1), both of which came up with a high MRPI area for machine 3, but at the price
of a lower value for machine 2. Still, these latter two brought the highest average MRPI
areas, as well as the highest maximal MRPI area values, even though also the highest
variance among the machines MRPI areas.
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Another important concern is influence of the start conditions on the end result.
That is, fminsearch failed regardless of the initial states, whereas with patternsearch,
one of the start conditions resulted in global validity, with initialization vector (4.2) the
solver did not cross —although came very close to— the -1 mark — just like fminsearch

with(4.1).
Ultimately, the span method is —to some extent— capable of optimizing the MRPI

set area (living with the assumption that generally the greater span a type A MRPI set
has, the bigger area it encloses). However, utilizing the span method for optimization is
quite problematic in practice, as described in Section 3.2.3. Because a whole range of
valid type A MRPI sets evolve without ever crossing the ω = 0 axis, the span is simply
undefined for these barriers.

On the other hand, because the set area method does not consider such an assump-
tion but optimizes directly for the MRPI set area, we would generally expect better re-
sults from the set area method than the span method, given that global validity has
already been reached. However, when comparing end results of set area optimization
scenarios with those of the span method, we find —somewhat unexpectedly— that the
span method’s results either come really close to, or even outperform those of the set
area method.

4.3.1 Results Overview

Having consolidated area data for each successful optimization session, now it is pos-
sible to see how the sessions’ performances compare to each other based on average
MRPI area at the end of the optimization and the number of objective function evalua-
tions needed, as it has been done in Figure 4.4.
In it, the following patterns emerge:

• Most sessions’ results cluster between 4000 and 10000 objective function evalu-
ations, with average MRPI sizes between 35 and 45.

• However, generally sessions of this cluster delivered the most varying results.

• All results outside of the cluster were produced by utilizing the span method.

• Among these, surrogateopt produced arguably the best results, with an average
MRPI area size comparable to those in the cluster, but being an order ofmagnitude
faster.

• The sole successful run of patternsearch was second to surrogateopt in speed,
but was among the worst performers.

• The absolute worst results were delivered by the genetic algorithm ga when ap-
plied to the span method, being one of the slowest sessions, while having the
worst result as measured in average MRPI area.
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Figure 4.4: Comparison of successful optimization sections based on the objective function
evaluations needed and the final average MRPI set area. The area enclosed by the circles
represent the variance in MRPI set areas among non-reference machines.
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4.4 Applicability to More Complex Systems

In Section 4.3 we have examined the applicability of optimization methods outlined in
Section 3.2.2 and Section 3.2.3 as well as optimization algorithms overviewed in Sec-
tion 3.4 in finding and size-optimizing sets of angular constraints granting global MRPI
set validity. Nevertheless, in our experimentsweonly ever relied on the effective network
(EN) model of Section 2.1.3, and the IEEE nine bus test system of Figure 4.1. Although
such a small-scale system is fairly easy to comprehend (consider its oscillatory graph in
Figure 5.11(a)), having encountered several inadequate optimization algorithms leaves
us with the question whether systems of greater extent can at all be considered plausi-
ble subjects for optimization of these sorts.

A bottleneck worthy of attention is the increase in computational complexity as the
number of generators in the system increase. We find that because the EN oscillatory
model constitutes a full graph, the number of edges E increases with the square of the
generator countNg, specifically E(Ng) = 0,5Ng

2−0,5Ng as alsomarked in Table 2.1.
Consider the example brought along by [47] seen in Figure 4.5, and how 822 links in the
network representation (see Figure 2.4) resulted in 14365 edges (and a comparatively
slight decrease in node count from 678 to 170) in the EN oscillatory model. The issue
with having a high number of edges in the oscillatorymodel is thatKj ·sin

�

δ − δj − γj
�

has to be calculated twice for each edge (once for each node it connects) in (2.2), with
sin(·) being not among the computationally cheapest mathematical operations. In [9,
Theorem 7.2] the computation of sin(·) to the nth digit is shown not to be worse than
O(M(n) logn), where M(n) represents the number of operations it takes to multiply
two integers in the range [0,2|n|). In in a small test —involving computing the sine of
a million random numbers, as well as the product of a million pairs of random values
with 16 digits of precision, each selected from the range of (0,1)— we saw a 2,5-fold
increase in computation time of a sine evaluation as compared with the multiplication.
All in all, less sine evaluations, and consequently, less edges in the oscillatory graph is
more desirable.

Taking a look at Table 2.1, we may conclude that the SM model (see Section 2.1.5)
would be a step in the wrong direction as that would only increase the number of nodes
in the oscillatory graph by the number of physical loads, applying which to the example
in Figure 4.5 would result in —the SM model constituting a full graph much like the EN
model— 0,5 · 678 · (678 − 1) = 14365 in 229503 edges - an almost 16-fold increase
from the EN model.
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(a) (b)

Figure 4.5: Power grid of Northern Italy. (a) The physical network of transmission lines, with
678 nodes and 822 links. (b) The EN oscillatory model with all power elements that are
not a generator omitted, leaving 170 nodes. Note that for visibility reasons, only half of
all 0,5 · 170 · (170 − 1) = 14365 edges are shown, specifically those with the highest dy-
namic coupling coefficients. From [47, Figure 1].

For the structure preserving (SP) model (see Section 2.1.5) one cannot determine the
node and edge counts in the oscillatory graph. This is exactly because of the persis-
tence of the structure of the examined power grid’s network representation. Nonethe-
less, one might assume —based on real-world examples such as the one in Figure 4.5—
that power grids tend to be rather loosely connected, with node degrees seldom exceed-
ing four. Still, it would be desirable to be able to compare the different oscillatorymodels
regarding computational complexity.

Hence, we conducted another test, in which we loaded case files (supplied with the
MATPOWER library by default) of increasing generator counts, measuring the average
CPU time it takes to evaluate a single call of the objective function. We decided to
rely on measurements of the span method of Section 3.2.3 only because of two rea-
sons. First, in Section 4.3 the span method proved to be generally more reliable than
the area method of Section 3.2.2. Second, it is not the optimization performance of
these methods that we are interested in at this point, but the growth of computational
complexity as the number of generators increases. We assume that the span method
is more consistent in its evaluation time throughout an optimization session, because
it involves —more or less— the same general steps before and after global validity has
been reached: obtaining the MRPI set barrier candidates through numerical backwards
integration, and span determination. With the area method on the other hand, the MRPI
area of a machine may or may not be calculated based on whether the determined
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MRPI barrier candidates constitute a valid MRPI set or not. (Hereby we conducted an
improvised test running the simulannealbnd solver with starting conditions as in (4.1)
with both the area and span methods. We indeed found that the the variance in CPU
time required for the area based objective function execution of σ2 ≈ 0,00167 was
about 1,57-fold higher than the σ2 ≈ 0,00106 of the span method.) That being said,
the results of our measurements are collected in Table 4.3.

Case Ng

EN model SP model

E deg ×tCPU N1 E deg ×tCPU

9 3 3 2 1 9 36 3,00 1

14 5 10 4 2,33E0 14 69 3,63 1,41E0

57 7 21 6 2,45E0 57 234 3,66 3,53E0

39 10 45 9 3,86E0 39 161 3,29 3,00E0

89pegase 12 66 11 4,94E0 89 537 5,32 4,85E0

145 50 1225 49 1,33E1 145 1139 5,84 9,64E0

300 69 2346 68 1,35E1 300 1325 3,59 1,85E1

1354pegase 260 33670 259 1,17E2 1354 5554 3,44 5,62E1

2383wp 327 53301 326 1,13E2 2383 9136 3,37 1,02E2

9241pegase 1445 1043290 1444 1,59E3 9241 41990 3,93 1,10E3

13659pegase 4092 8370186 4091 1,10E4 13659 63185 3,56 2,69E3

Table 4.3: Computational complexity with two oscillatory models. Case refers to the MAT-
POWER case file loaded. All values in this column are to be prefixed with “case”, and postfixed
with “.m’’, thus the first value would be case9.m. Furthermore,Ng is the number of generators
in the network representation of the loaded power grid case. For the compared models EN
and SP, this happens to be equal to the number of second order oscillators in the oscillatory
representation as in Table 2.1, and for each model E is the number of edges in the oscilla-
tory graph, deg is the average number of edges connecting to a node in the oscillatory graph,
and ×tCPU is the average CPU time it took to evaluate the span objective function, expressed
as a multiple of the average CPU time used for objective function evaluation when case9.m

was loaded for the given oscillatory model. E.g. when working with the SP model, a single
call to the span objective function took —on average— about 2,69 · 103 times as much CPU
time when working with case13659pegase.m than when working with case9.m. Furthermore,
N1 represents the number of first-order oscillatory nodes in the oscillatory graph.
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In Figure 4.6 we plotted out the objective function’s average CPU time increase×tCPU
as a function of the generator count Ng. In it we can observe that the CPU time con-
sumption indeed grows with some square function of the generator count for the EN
model, whereas this growth is rather linear with the SP model.

Figure 4.6: CPU time consumption of a single span-method objective function evaluation for
the EN and SP models as a function of generator count. The horizontal axis corresponds to
Ng, whereas the vertical axis to ×tCPU in Table 4.3.

We find similar results in Figure 4.7, where we have compared the number of edges
in the oscillatory model as compared to the number of generators. Here, the SP model
shows an almost linear interdependence, whereas the EN model’s data series can be
best fitted with a square function.
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Figure 4.7: Edge count in the SP and ENmodels as a function of generator count. The horizontal
axis corresponds to Ng, whereas the vertical axis to E in Table 4.3.

In this sectionwe have already presumed that the quadratic growth in computing time
with the EN model can —for the most part— be attributed to the ever-growing number
of sine evaluations due to the increasing node degrees in the oscillatory model. Data
presented in Figure 4.8 appears verifying, in that we observe a linear growth in average
node degree when compared with generator count for the EN model, whereas for the
SP model, the average node degree stays relatively close to a constant value of around
3,87.
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Figure 4.8: Average node degree in the SP and ENmodels as a function of generator count. The
horizontal axis corresponds to Ng, whereas the vertical axis to deg in Table 4.3.

Having thoroughly examined the data in Table 4.3 we arrive at the conclusion that the
EN model (or the SM model) is generally not suitable for MRPI set search/optimization
tasks due to the quadratic complexity curve shown in Figure 4.6. Itmight however worth
calling attention to that it is not thewhole optimization process thatwepronounce these
statements about, but only a single evaluation of the (span method) objective function.
However, an increase in power grid complexity most probably introduces further com-
putational complexity through...

• ...an increase in the execution time of the outer optimization algorithms. Although
most illustrations in Section 3.4 we have exemplified the algorithms’ inner work-
ings in two dimensional state-space, we must not forget that the dimensionality
of the design vector of (3.6) is growing linearly with s ∈ R(2Ng).

• ...an increase in the number of objective function evaluations. Because of the non-
linearities in (2.23) as well as in the optimizationmetods of Section 3.2.2 and Sec-
tion 3.2.3, one would expect that the function evaluation count would rise fairly
fast with a growing number of generators — even though we are unable to make
an exact statement about the rate of growth at this point of research.

Because of the above reasons, we suppose that the EN and SMoscillatorymodels are
—although might perform good in other applications— impractical for the optimization
of large-scale, real-world power grids; the structure preservingmodel, on the other hand,
appears to be more promising. Whether the applicability of the latter for power grid
optimization remains plausible even with the added computational overhead due to
the above listed factors, shall be the subject of further exploratory research.

70



APPLYING OPTIMIZATION IN CRITICAL
CLEARING TIME DETERMINATION 5
5.1 Power Systems Stability

Power systems management is concerned with a safe and reliable power flow in three
aspects as described in [25]:

• Power system protection deals with the safe operation of power system equip-
ment, such as transformers, generators, and transmission lines. [25, Part I]

• Power system control has to do with the (economically) optimal operation of the
whole power grid, thus involves topics such as Energy Management, and the unit
commitment- and optimal power flow problem. [25, Part III]

• Power system stability is focusing on preserving the integrity of the power grid in
that the power system as a whole is able to regain a state of equilibrium after a
physical disturbance [25, Part II], and is the part we will be most concerned with
in this work.

As described in [37, S. 2.2], it makes practical sense to break the problem of power
system stability up into (sometimes overlapping, but more or less distinct) classes and
subclasses that are similar in physical nature, the magnitude of the disturbance, in af-
fected devices, processes, or applicable calculation methods. Figure 5.1 serves as a
brief overview of this classification.

Power System
Stability

Voltage Stability Frequency Stability Rotor Angle Stability

Small/large signal

Short/long term

Long-term Small signal

Transient

Figure 5.1: A simplified classification of power system stability. Adapted from [37].

• Voltage stability is concerned with being able to maintain an acceptable voltage
level on all buses after a disturbance has occurred [37, S. 2.1.2]. Voltage stability
might be further divided into overlapping subcategories of small- or large distur-
bance stability as well as short-, and long term stability [25, S. 8.2.3].
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• Frequency stability is concerned with the power system’s ability to maintain its
steady frequency after amajor disturbance, resulting in a significant imbalance be-
tween power generation and consumption. [25, S. 8.2.4] Such major disturbances
cause significant deviation of voltages, frequencies, and power flows that require
adjusting slow processes and controls (such as boiler-, or conduit dynamics), and
so are not included in other models for Power system stability. [37, S. 2.1.3] "Gen-
erally, frequency stability problems are associated with inadequacies in equipment
responses, poor coordination of control and protection equipment, or insufficient
generation reserve." [25, S. 8.2.4]

• Rotor angle stability is concerned with the ability of a power system of intercon-
nected synchronousmachines tomaintain synchronism, and has to dowith study-
ing electromechanical oscillations present in the system. Rotor angle stabilitymay
further be subdivided into two subcategories: small signal stability, and transient
stability. The former is concerned with the ability of the power system to main-
tain phase synchronism under continuous disturbances (such as ever-present
changes in power generation and consumption) considered small enough for sys-
tem equations to be linearized, while with the latter the focus is on whether the
power system is able to maintain synchronism following a disturbance so severe,
that the pre-, and post disturbence steady state of the power system differ signif-
icantly. [37, S. 2.1.1] [25, S. 8.2.2]

Of all power system stability classes, this work will be considered with transient rotor
angle stability exclusively.

5.1.1 Transient Stability

As described above, transient stability analysis deals with fault scenarios in which the
pre-, and post-disturbance steady states differ significantly. Speaking of changes in
power system steady state it is worth touching on the subject of Operating States as
conceptualized in [17] and further studied in [21], according to which, three sets of equa-
tions supervise power system operation:

• A set of differential equations like those in Chapter 1 describing the physical laws
governing the dynamical behavior of the system components.

• A set of algebraic equations comprising equality constraints, that is, the relation-
ship between power generation and consumption.

• Another set of algebraic equations describing inequality constraints, representing
constraints on system variables that should not be exceeded (e.g. those that we
defined in Section 3.1).

Since power system stability is most concerned with whether and how a power sys-
tem regains a state of equilibrium after a physical disturbance, it is inequality con-
straints (again, describing constraints on system variables) that transient stability anal-
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ysis is most concerned with. However, it is discussed in Section 2.1 that system pa-
rameters static to the equilibrium state (such as steady-state power consumption or
steady-state voltages) are obtained by optimization of equality constraints, as in solv-
ing the optimal power flow problem. These steady-state system parameters are taken
as constant for the purposes of transient stability analysis (since only very small time
scales are considered), and thus are viewed as static input parameters to dynamical
models. These dynamical models are then used to describe the evolution of system
variables, and to examine if inequality constraints are violated.

Based on whether equality-, and inequality constraints are met, [21] describes five
operating states of power system operation as summarized in Figure 5.2.
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Figure 5.2: Dy-Liacco’s diagram extended with possible pre-fault-, fault-on, and post-fault states.
Adapted from [21].

During normal operation, all system constraints are met. Once a disturbance causes
some system attributes to reach a level of inadequacy, the power system might enter
the alert state in which preventive action must be taken to return the system to the
normal state of system attributes between adequate thresholds, while constraints are
still met all along. However, a large-scale disturbance might cause the power system to
violate one or more inequality (voltage, rotor angle, frequency, ...) constraints, and thus
enter the emergency state. Once here, it might be possible to —through fast corrective
action— bring the system back to a state of met constraints. This might be achievable
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due to the possibility to overload an electric component for a short amount of time, that
hasn’t been exceeded before corrective action was taken. If components have been
overloaded more, or for longer than allowed, built-in physical protection might disable
components causing the system to lose integrity, resulting in partial-, or total service
interruption, entering the in extremis operating state. Once inequality constraints are
satisfied, the power system enters the restorative state, where resynchronization and
load pickup takes place, returning the system to a steady state in which all conditions
are met once again.

With transient stability, the scope of the analysis is whether angular-, and frequency
constraints are met in a given steady state of power system operation, and how rotor
angles and frequencies evolve over time in case of a state transition. Transient security
analysis may be divided into a static and a dynamic part, as summarized in [51, S. 1.3.2].
The static part aims to examine the post-fault equilibrium state of the power system,
checking whether it leads to acceptable operating conditions, that is, whether inequal-
ity constraints are met. However, a post-fault equilibrium state might not be stable; dy-
namic transient security assessment considers how the systemwill reach its post-fault
operating conditions. Thus, in the scope of transient security analysis, three scenarios
are always considered:

• The pre-fault-scenario considers the pre-fault equilibrium point (the pre-fault
steady state), which serves as a starting point for transient analysis. As shown
in Figure 5.2, the pre-fault-scenario may correspond to the normal-, or alert oper-
ating states, in which inequality constraints remain fulfilled.

• The fault-on-scenario considers the system dynamics that have —due to the ap-
pearance of a fault— changed. The fault-on-scenario may correspond to the Emer-
gency operating state in which some inequality constraints are being violated.

• The post-fault-scenario considers the post-fault equilibrium point, and post-fault
inequality constraints after the system dynamics once again underwent a change
due to fault isolation or clearance. The post-fault-scenario may either correspond
to the in extremis operating state in which —although a number of power sys-
tem protection measures might took place to avert an emergency— inequality
constraints remain unmet, or the restorative operating state in which through addi-
tional measures the power system has regained inequality constraint compliance.

Mathematically formulated, the system dynamics in above scenarios can be de-
scribed through a set of differential equations as in [4, S. 2.1]

.
 = ƒ(), t ∈ ] −∞, tF[
.
 = ƒF(), t ∈ [tF, tC[
.
 = ƒ (), t ∈ [tC,∞[

(5.1)

where  is the vector of system state variables, and ƒ() is the initial system dynam-
ics before a fault occurs at time tF , referred to as the pre-fault dynamics of the system.
The fault-on dynamics of the system is denoted by ƒF(), prevalent between the fault
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time tF and the point in time the fault was cleared, that is, the clearance time. The sys-
tem dynamics after fault clearance is described by ƒ (). Transient security analysis’
main focus is then to investigate, whether inequality constraints are met in and during
transitions between each scenario, as well as to make a statement about the post-fault
steady state.

A prototypical use-case for transient stability analysis is critical clearing time (CCT)
assessment. Hereby it is assumed that the pre-fault, fault-on, and post-fault dynamics
are already assumed as known. Then, one is interested in finding the critical clearing
time tCC: the duration up to which the fault dynamics may prevail (tC − tF) < tCC so
that the post-fault dynamics still brings the system to an equilibrium, and so that no
inequality constraints are violated during the whole process. The fault-on scenario may
denote a system that is identical to the pre-fault scenario except for the fault, say, a
power transmission line being cut, or a short circuit triggering protection equipment.
The post-fault dynamics may or may not be identical to the pre-fault one. In the former
case, the fault can be considered as resolved, whereas in the latter as detached.

There aremultiplemethods for computing the critical clearing time. Basically all mod-
els discussed in Section 5.1.3 are capable to facilitate CCT calculation. Say, one might
rely on the classical model to determine the critical clearing angle using the equal ar-
eas criterion, fromwhich the CCT can be obtained if the system frequency is known and
taken as constant. Another way would be just running time-domain simulations, while
changing the duration of the fault-on dynamics, and examining the results.

5.1.2 The classical model

A synchronous electrical machine’s dynamic behavior is well described by the swing
equation [57, Eq. 15.20]

M
..
δ = Ps − Pe = P (5.2)

where M is the angular momentum, δ is the torque angle or angular deviation (angular
difference between the rotor as compared to a reference bus), Ps is the rotor (shaft)
power, and Pe is the electrical power. The difference of the latter two, P, is called the
accelerating power. At this point one might notice that (2.2) was also referenced to
as the swing equation in Section 2.1. Indeed, as [47] deduces, (2.2) is actually derived
from (5.2) through linearizing the latter around a synchronous equilibrium point and
introducing some constants. Said linearization is feasible, since [49]’s main concern
is power grid synchronization, and thus considers very short time intervals, and rather
small perturbations.

The most rudimentary model for synchronous electrical machines used for transient
stability analysis considers a generator as a constant voltage behind a transient reac-
tance for electrical parameters, and a mechanical parameter such as the moment of
inertia such as in (5.2) (or the angular momentum, taken as constant for near-constant
angular velocities) [25, 9.3.1]. This is known as the classical model of synchronous elec-
trical machines. As we will soon see in (2.2), the coefficient of the angular acceleration
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of the machine rotor
..
δ is often expressed as the function of some inertia constant H

and the rated frequency of the machine ωR. The main correlation governing the classi-
cal model is

Pe = Pmx sin δ (5.3)

known as the power-angle relationship, where Pe denotes electrical power, Pmx is the
maximal electrical power, and δ is the torque angle.

5.1.3 Approaches for Stability Assessment

Transient stability analysis is most concerned with the evolution of rotor angles and
frequencies of power system components modeled as electrical motors or generators.

Most approaches that are going to be discussed in this subsection build on the clas-
sical model of synchronous electrical machines that has been discussed previously in
Section 5.1.2.

Equal areas criterion

With the help of (5.2), the equal area criterion can be deducted, which states that

∫ δm

δ0

P dδ =
∫ δm

δ0

(Ps − Pe) dδ⇒
∫ δm

δ0

Ps dδ =
∫ δm

δ0

Pe dδ (5.4)

where Ps is the shaft-, or mechanical power, Pe is the electrical power, δ0 is the steady-
state torque angle before a fault in the system, and δm is the maximal torque angle
that the machine reaches after the fault. Figure 5.3 shows (5.3) and the implication of
(5.4) in a power-angle diagram, the latter known as the equal areas criterion of transient
power system stability.
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Figure 5.3: Power-angle curve showing a step change in shaft (mechanical) power with areas
relevant to (5.4). Ps0 and Ps1 are shaft power values from before-, and after the step change.
δ0 and δ1 are torque angles associated with steady states corresponding to the aforemen-
tioned shaft powers. Pe is the electrical power from (5.3). From [25, Figure 9.5].

The criterion states that since the area under the power-angle curve is (assuming
synchronicity) proportional to energy consumed, and since for a machine to maintain
it’s stability, the total (mechanical and electrical) energy generated (or dissipated) dur-
ing transition from the old equilibrium state δ0 to the new equilibrium state δ1 must be
equal to the energy dissipated (or generated) during transition from the new equilibrium
state δ1 to the state with the maximum angle deviation δm, and so the corresponding
areas A1 and A2 in the power-angle diagram must also be equal.

This holds intuitively, because assuming that the Pe curve would just be a straight,
infinitely long line, say, tangential to the Pe curve in Figure 5.3 at the axis origins, then
any step change in mechanical power output would would cause the machine to first
reach, then shoot over the new equilibrium point, oscillating around δ1 between δ0 and
δm until -due to power losses- the oscillation amplitude would settle more and more,
and eventually would die out.

However, since the Pe(δ) function is not actually an infinite straight line (hence Pmx:
neither a machine, nor a bus can generate or consume power above some finite value),
thus it can very well be, that A2 simply can not get as big as A1.
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(a) (b)

Figure 5.4: Evaluating critical clearing time problems with the help of the power-angle relation-
ship. Ps denotes shaft power, δ0 the pre-fault steady state torque angle, δc1 the torque angle
at the time of fault clearance tc1, and δm the maximum torque angle deviance. From [25, Fig-
ure 9.6b, Figure 9.7b].

Figure 5.4 shows another use-case for transient stability analysis based on the equal
areas criterion, in which power-angle curves corresponding to the fault states (as intro-
duced in Section 5.1.1) are shown. This time it is not the shaft power that is changing
from scenario to scenario , but the shape of electrical power-angle curve.

In Figure 5.4(b), the above criterion is unmet, because the fault was cleared too late
for the machine to be able to recover, because there is just not enough area between
points d and e and curves Ps, and the post-fault Pe for it to match the area proportional
to the mechanical energy generated during the fault-on scenario (that is, the area be-
tween Ps and Pe during fault and between points b and c.) In Figure 5.4(a) however, the
equal areas criterion ismet, and the post-fault systemwill approach it’s new equilibrium
power angle where the line of shaft power Ps intersects the curve of post-fault electrical
power Pe. Given this latter scenario, we might determine the critical clearing angle δc
analytically by first considering its physical meaning: it is the rotor’s biggest possible
angular deviation, above which the machine is no longer able to return to its equilib-
rium point. Intuitively, this angle must lay right of δc1 in Figure 5.4(a), since we still have
unused area left right of A2. We also know, that it must be let of δc2 in Figure 5.4(b), be-
cause the equal areas criterion is not fulfilled in that scenario, and so themachine turns
unstable. In other words we do not have enough area under the post-fault power-angle
curve to counterbalance A1. Indeed, the critical clearing angle is the angular deviation
at which the two areas are equal A1 = A2. Hence
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∫ δc

δ0

(Ps − Pe,fault,max · sin (δ)) dδ =
∫ δ′0

δc

�

Pe,post,max · sin (δ) − Ps
�

dδ (5.5)

which yields for the critical clearing angle

δc = rccos

�

Ps(δ′0 − δ0) − Pe,fault,max · cos (δ0) + Pe,post,max · cos (δ′0)

Pe,post,max − Pe,fault,max

�

(5.6)

as [55, eq. 2.14] states, assuming that the fault-on electrical power is given by
Pe,fault(δ) = Pe,fault,max · sin δ, whereas the post-fault electrical power by Pe,post(δ) =
Pe,post,max · sin δ. Furthermore, since in point e in Figure 5.4(b) Ps = Pe,post

δ′0 = π − rcsin
�

Ps

Pe,post,max

�

(5.7)

Having expressed the critical clearing angle in (5.6) and (5.7), we might derive the crit-
ical clearing time by integrating (5.2) [24, Sec. 16.6] utilizing the fact that dδdt = 0 when
t = 0

d2δ

dt2
=
P(t)

M
→

dδ

dt
=
∫ t

0

P(t)

M
dt =

1

M

∫ t

0

�

Ps − Pe,post,max · sin (δ(t))
�

dt

(5.8)

now, at this point one cannot help but take issue with integrating sin δ(t) with respect
to time, as the formal interdependence between power angle and time δ(t) is not explic-
itly known (take as examples the time-domain plots in Figure 5.4). Indeed, symbolically
expressing the critical clearing time is inmost scenarios not possible. In [24, Sec. 16.6] a
deduction of the critical clearing time is given for the special case when Pe,fault(δ) = 0.
In this special case, the P(t) = Ps, with which

dδ

dt
=
∫ t

0

Ps

M
dt =

Ps

M
t→

∫ δc

δ0

dδ =
Ps

M

∫ tc

0
dt (5.9)

going forth with the integrations

δc − δ0 =
Ps

M

t2
c

2
(5.10)

with which we arrive at

tc =

√

√

√

2
M

Ps
(δc − δ0) (5.11)

Because we have assumed in (5.9) that in the fault-on scenario all electrical power
consumption falls out, while the generated mechanical power Ps remains constant, we
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implicitly also made the assumption that all of the generated power can only be uti-
lized to increase the rotor’s kinetic energy under constant accelerating power. In other
words, if Pe,fault(δ(t)) would be greater than 0 in some time interval, the total accelerat-
ing power in that timewindowwould be less thanwhen the fault-on power consumption
is zero. Consequently, the critical clearing angle δc would be reached in a longer time,
that is, the critical clearing time tc would be higher. Thus, (5.11) constitutes an underes-
timation for the critical clearing time for the case that we initially proposed. Although
this is is a useful metric from an engineering point of view, as for explicit results, we
might as well paraphrase [24, Sec. 16.6]: “This example serves to establsh the concept
of critical clearing time which is essential to teh design of proper relaying schemes for
fault clearing. In more general cases the critical clearing time cannot be explicitly found
without solving the swing equations by computer simulation.”

Furthermore, the equal areas method is clearly best applicable in a Single Machine
Infinite Bus (SMIB) system. In fact, [25, S. 9.2.3] states that although this method is not
generally applicable to multimachine systems, it is a valuable learning aid.

Other sources, such as [2, S. 2.9] give an example of reducing a two-machine system
to a SMIB one, stating that the same assumptions used for a system of one machine
connected to an infinite bus are often assumed valid for a multimachine system, and
that this model isuseful for stability analysis, but is limited to the study of transients for
only the "first swing" or for periods on the order of one second.

In section 4.2 of [43] "Dynamic Equivalent of the Critical Machines", the author pro-
poses that when a fault occurs in a large power system, only a few machines actively
response to the fault and tend to lose synchronism. [...] Therefore it is enough to study
the behaviour of the critical machines with respect to the rest of the power system in
order to evaluate the transient stability of the system for a specific fault.

However, these works do not anymore count among the newest ones, and as it will
shortly be discussed, new or refined models and methods rendered a number of the
classical model’s concerns obsolete.

Time-domain simulation

The classical representation of synchronous machines (introduced in Section 2.1) was
historically used to reduce the computational burden of more detailed models as in ne-
glecting a number of machine characteristics, such as the effects of damper windings,
core saturation, excitation systems, mechanical load dynamics, etc [25, 9.3.1].

However, with today’s cheaply accessible computational capacity, neglecting above
properties became unnecessary, as even with more complex, more detailed models,
computational methods for time-domain simulation that are efficient enough to pro-
duce quasi-instantaneous results (on the short time scale that transient stability analy-
sis is concerned about) are pretty much available.
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Figure 5.5: Time domain plots of the power angle of a transiently stable-, and unstable machine.
From [25, Figure 9.1].

However, classical modeling is still of great use when it comes to analyzing the an-
gular stability of a single machine connected to an infinite bus or, practically, a large
network, or when detailed model data is unavailable [25, 9.3.1].

Direct methods

Direct methods of stability analysis seek to provide a statement about transient stabil-
ity without explicitly solving the set of differential equations describing the dynamical
behavior of a system. Indeed, the equal areas criterion was one of the direct methods
for transient stability analysis, even though one that is hardly if at all scalable.

The historical overview of direct methods in [25, S. 12.1] emphasizes the importance
of the work of Aleksandr Mikhailovich Lyapunov, especially for laying out his second
method for stability (also called the direct method) in [42] way back in 1892. This states
that a dynamical system

.
 = ƒ () having an equilibrium point at  = 0 is locally stable

around this equilibrium point if there exists a function (a Lyapunov function) V() :
Rn → R such that

V() = 0 if  = 0

V() > 0 ∀  ̸= 0
.
V() ≤ 0 ∀  ̸= 0 for Lyapunov stability
.
V() < 0 ∀  ̸= 0 for asimptotic stability
.
V() > 0 ∀  ̸= 0 for instability

(5.12)

Lyapunov stability intuitively means that solutions to the differential equation repre-
senting the dynamical system starting close enough to (that is, in some finite vicinity
around) the equilibrium state, will remain close enough to (that is, in some other finite
vicinity around) the equilibrium point for all future points in time.

Asymptotic stability intuitively means, that solutions starting close enough to (that
is, in some finite vicinity around) the equilibrium state will eventually converge towards
the equilibrium as time progresses.
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Finally, instability means, that the state  = 0 is an unstable equilibrium state, and so
that solutions starting anywhere else will eventually leave any vicinity of the equilibrium
point.

If a function V satisfies the first two criteria of (5.12), but none of the last three, then
Lyapunov’s direct method cannot deliver a statement about the systems (in)stability.

Figure 5.6: Visualization of state (in)stability in the sense of Lyapunov. From [5, Fig. 9.1].

Now, if one starts to wonder what physical meaning could V be assigned to, some-
thing like the energy-rotation function of a pendulum might come to mind first. Indeed,
an energy functions is generally a valid Lyapunov candidate. However, the ingenuity of
Lyapunov’s method lies in that V can be any Rn → R function that fulfills (5.12).

Lyapunov’s work did not caught much attention until the 1930s, when Soviet math-
ematicians revived his investigations, showing that his findings can be applied to a
range of physics-, and engineering problems. However, it was not until the 1960s that
academic discussion of engineering applications really took off on the western hemi-
sphere [31, S. 3]. Starting in the late 1960s, the application of this method to power
system analysis generated lively scientific discourse [25, S. 12.1].

The historical literature overview in [25, S. 12.1] reveals that much of said discourse
actually revolved around finding and improving suitable Lyapunov-functions that would
bring applicable results for more complex multimachine power systems.

However, themajor issuewith applying Lyapunov’s directmethod to power systems is
that the solutions it delivers are approximated. Literature review in [58] divides scientific
analysis of the subjectmatter in twomajor parts, with one concentrating on defining the
exact Lyapunov function regardless of the size and complexity of the electric system in
question, and the other focusing on defining an equivalent OMIB (one machine, infinite
bus) system for a larger power system, as the Lyapunov function for the former is known.
Still, both methods rely on approximation: the former because the Lyapunov function
can only be expressed in a form of a series that has to be truncated at some point, and
the latter because of the simplification that the OMIB model introduces.

Furthermore, [58] cites [51] in proposing that the most successful application of the
OMIB-based approach is a hybrid method called SIME (single machine equivalent),
which basically applies the OMIB approach and the Lyapunov stability method in each
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step of a time domain integration, in order to overcome the approximation introduced
by the OMIB model. This method is however still way faster than simple time domain
integration, as based on the Lyapunov-criteria, a statement about the stability of a tra-
jectory can be made in shorter time.

Model-free approaches

Methods of transient stability analysis discussed so far all rely on white-box models,
that is, models that are deterministic, fairly detailed, and rooted in physical knowledge.

Other methods of transient stability analysis are based on gray-, or black-box mod-
els, and so rely on raw data more; some sources, such as [1] choose to refer to these
methods as model-free instead.

An overview of methods for transient security analysis for power systems was given
in [45] in the mid-1990s, dedicating a section to

• Pattern recognition methods, focusing on establishing a functional relationship
between selected features of the fault-on trajectory, and the system state.

• Neural net methods, focusing on building and training neural network, that is ca-
pable of identifying system state based on a set of selected features.

• Probabilistic methods, focusing on determination of probability distributions for
power system stability, e.g. Monte Carlo simulation.

• Expert system methods, combining the knowledge of human experts with other
method of transient stability analysis in an "if-then-else" rule set.

Set-based approaches

Since after the millennium, publications discussing the topic of power system transient
stability based on reachability analysis started emerging more and more. In [28], reach-
ability analysis is being characterized as focusing on finding reachable sets. These are
basically subsets of the state-space of a dynamical system that capture the behavior
of entire groups of trajectories at once.

Reachable sets can further be subcategorized into forward-, and backward reachable
sets. The former being defined as the set of all states that can be reached along trajec-
tories that start in a specified initial set [28].

A backward reachable set, on the other hand, is the set of states where trajectories
can reach a specified target set [28].

backward 
reachable 

set

target 
set

initial
set forward

reachable
set

Figure 5.7: Visualization of backward-, and forward reachable sets. From [28, Fig. 1].
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The main motivation for the recent academic activity around set-based stability anal-
ysis is that it combines advantages of numerical time-domain integration and direct
methods. Given a set of initial-, or final states, and sets of disturbances and parameters,
all possible trajectories of a system can be computed at once. The result is rigorous, as
opposed to those based on Lyapunov’s method that are generally -for power systems
more complex than OMIB- approximate [1].

However, a significant disadvantage of set-based methods —at least in the case of
power system applications— is considerable computational complexity.

Set-based power system transient stability analysis being themain focus of this work,
Section 5.2 will provide an overview of how to go an about set-based critical clearing
time determination.

5.2 Set-based CCT determination

With set-based CCT determination we are first considering the three operational scenar-
ios from Section 5.1.1. We build the oscillatory models for each of the scenarios, which
we will be using to extract data as follows:

• Pre-fault scenario: the pre-fault equilibrium point. This is the state in which ma-
chines reside up until the occurrence of a fault. Hence, this is the starting point
for the fault trajectory. This is represented by the red marker in Figure 5.8.

• Post-fault scenario: the MRPI and admissible set barriers of the system as left af-
ter fault clearance. These would be the thick blue and red set barriers in Figure 5.8.

• Fault-on scenario: the fault-trajectory evolution from the re-fault equilibrium point
until its intersection with the admissible set barrier (crossing the MRPI barrier)
This is represented as a yellow curve in Figure 5.8.

Having obtained above data, we can determine the fault trajectory’s crossing time of
the MRPI set barreir tM, and of the admissible set barrier tA. Now, let us assume, that
the fault has occurred some t time ago, when it gets cleared at once. If t ≤ tM, the post-
fault state is somewhere along the fault-trajectory (along the yellow curve in Figure 5.2),
but inside the MPRI set. Given the post-fault dynamics, Def. 2 and Def. 3, the post-fault
trajectory will evolve back to the post-fault equilibrium point. If t > tA, the post-fault
state falls outside of the admissible set, and so the post-fault dynamics will definitely
not bring the state back into the MRPI set (in fact, not even into the admissible set),
and a post-fault steady-state will never reached. Consequently the critical clearing time
for a specific triplet of pre-fault, fault-on, and post-fault scenarios must be somewhere
between tM ≤ tC ≤ tA.
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Figure 5.8: A phase diagram with a fault trajectory.

A special case is when in the post-fault scenario represents a full recovery, that is,
when the pre-, and post-fault scenarios are exactly the same. In this case, tC = tA, as
illustrated in Figure 5.9. This means, that if the fault is cleared exactly when the fault
trajectory intersects the admissible set barrier, then the post-fault trajectory will evolve
exactly along the intersected admissible set barrier, crossing theω = 0 axis in its point
of ultimate tangentiality [dmx 0]. For a clearing time just above tA, the post-fault tra-
jectory would evolve outside of the admissible set, and would intersect the angular con-
straint just above (as in Figure 5.9) or below the point of ultimate tangentiality.
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Figure 5.9: Phase diagram with identical pre-, and post fault scenarios.

In the general case —when the post-fault scenario differs from the pre-fault one—,
the state corresponding to the critical clearing time lies on the fault trajectory segment
between its MRPI and admissible set barrier crossing. This would be the point marked
at tC in Figure 5.10. Following the post-fault trajectory originating at this critical point,
we find that this trajectory is the one among all stable trajectories that intersects the
angular constraint in ω = 0, that is, exactly in the point of ultimate tangentiality.

Indeed, oneway of obtaining the critical clearing timewould be conducting numerical
backwards integration from the point of ultimate tangentiality in the post-fault system
— basically redetermining the admissible set barrier — up until the intersection with the
fault trajectory.

This can either be done by first obtaining the two integral curves through numerical
integration, and then finding their intersection in the state space. Once an approxima-
tion (the goodness of which is dependent on the integral curves’ chosen resolution) for
the whereabouts of the intersection is given, the corresponding time value of the fault
trajectory can be regarded as an approximation for the critical clearing time.

Another approach would be conducting forwards integration of the fault dynamics
parallel to backwards integration of the critical post-fault trajectory. The difficulty hereby
would be that the curves in question do not intersect each other at any given time as in
there is always some positive distance between the actual states of the two evolutions.
In other words, once the fault trajectory reaches the critical clearing angle, the critical
post-fault trajectory might not reached the same state yet, or has already passed it. A
possible solution to this problem might be dynamically adjusting the post-fault dynam-
ics in each numerical integration step, so that it would evolve slower/faster as needed to
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catch the fault trajectory. This approach would seem plausible due to that the generator
dynamics (2.3) is time-invariant. Such an iterative algorithm could determine the criti-
cal clearing time for an arbitrary exactness, with the post-fault trajectory’s time-domain
data ignored and/or discarded.

Figure 5.10: Set-based CCT determination. The green lines represent post-fault trajectories that
stay inside or eventually evolve back into the MRPI set without breaking any angular con-
straints. Among these, the thicker green curve is the one corresponding to the critical clear-
ing angle, and the CCT. Thin red lines are post-fault trajectories that violate the upper angular
constraint.

5.2.1 Optimizing for Critical Clearing Time

We can concede that the greater the critical clearing time value, the more desirable it is,
as it represents an upper time constraint under which a fault must be cleared so that
rotor angle stability can be preserved. As we have have discussed in Section 5.2, deter-
mining the CCT for a given triplet of scenarios, we have to determine the pre-fault equi-
librium point, the fault-on trajectory, and the critical post-fault trajectory. Now, even with
the computational complexity ignored, optimizing directly for the critical clearing time
would only be plausible if two of the three scenarios (pre-fault, post-fault, and fault-on)
would be pre-assumed. We would typically have the pre-fault steady state and the fault
trajectory as a given, and would go on to find angular permissible angular constraints
for the post-fault system so that the CCT is as big as possible.

Yet, an approach like this would disregard a cardinal advantage of the set-based
method: the fact that with the set barriers —as overviewed in Section 5.1.3 under “Set-
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based approaches”— all possible trajectories of a dynamical system is determined at
once. Indeed, having determined the fault trajectory, and the post-fault barriers, we have
already obtained —as discussed before— upper- and lower estimates for the critical
clearing angle and critical clearing time as in Figure 5.10.

Of particular interest from an engineering-dimensioning point of view is the lower
estimate tM, as if the fault-on scenario remains in effect for no longer than the lowest
tM, of all  ∈ {1 . . . n} \ {ref} machines, then stability of the whole interconnected
system is retained.

We hypothesize that the greater the MRPI set in the phase diagram of a machine
is, the longer (as in time and as in length) it generally takes for the fault trajectory to
intersect the MRPI set barrier. We base this on the consideration that the bigger the
MRPI set is, themore interim statesmust the fault dynamics go through until the critical
clearing angle is reached. In order to review this hypothesis, we have conducted a test
comparingMRPI area size and estimated critical clearing time values. In it, we examined
the the IEEE nine-bus test system of Figure 4.1 and the ENmodel as in Section 4.3, with
the resulting oscillatory representation is shown in Figure 5.11(a).

(a) (b) (c)

Figure 5.11: EN model oscillatory graphs. The green diamond represents the reference node,
the orange star the examined node, while other nodes are marked by a dot. The numbers
on each edge is the strength of the dynamical coupling (Kj from (2.2)) between the nodes
it interconnects. (a): Pre-fault and post-fault system. (b): Fault-on scenario for when we are
examining machine 2. (c): Fault-on scenario for when we are examining machine 3.

Then, we considered the results of all the successful optimization sessions from Sec-
tion 4.3 as post-fault constraints. Since wewere unable to identify a fault-no scenario in
which the fault trajectory would intersect the resulting post-fault barriers, we proposed
two separate fault-on test cases. Both of these were constructed by direct modification
of the oscillatory model by lowering the dynamical coupling Indeed a more realistic
approach would have been modifying the network representation —simulating failing
transmission lines, or a change in power generation/consumption or in machines’ dy-
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namic parameters—, based on which the fault-on oscillatory model could have been
generated. Still, we find such a direct modification justifiable for the purposes of re-
searching the correlation betweenMRPI set size and critical clearing time. The resulting
fault-on oscillatory graphs are shown in Figure 5.11(b) and Figure 5.11(c) for when ma-
chine 2 or 3 is examined respectively. Both of these fault-on scenarios then result in a
fault trajectory evolution similar to that in Figure 5.8, crossing the MRPI and admissible
set barriers in the examined machine’s phase diagram. Next, we recorded the fault tra-
jectory’s MRPI barrier intersection time tM and admissible set barrier intersection time
tA, as well as the corresponding fault-on trajectory lengths sM and sA for all successful
optimization scenarios from Section 4.3.

For the extraction of aforementioned data, we have first obtained the post-fault bar-
riers in their entirety through numerical backwards integration, then conducted numeri-
cal —forwards— integration of the appropriate fault-on dynamics until the MRPI barrier
crossing took place. This method incorporated a reasonable tradeoff between having
to implement a highly customized integration algorithm, and the less accurate method
of finding (interpolating) the point of barrier crossing post-integration. The numerical
ODE solver ode45 of MATLAB could be supplemented with a custom exit function that
ensured that integration stops once a post-fault barrier has been reached. Having set
up numerical integration this way, the solver makes sure to dynamically decrease inte-
gration step size as the stopping condition is approached, so that absolute and relative
solution tolerances are met. Once the MRPI intersection point has been found and rel-
evant data has been saved, a second integration session took place with the point of
intersection as initial state, thereby obtaining the point of admissible set barrier inter-
section. Given the time-invariant nature of the swing dynamics (2.2), the upper estimate
for the CCT tA could then be expressed as the sum of the previously obtained lower es-
timate tM, plus the time at which the second integration session has been terminated
tA − tM.
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Method Solver s_init M A tM tA sM sA

area ga - 2 26,96 0,314 0,371 10,478 11,464

area ga - 3 61,38 0,588 0,614 6,451 6,551

area particleswarm - 2 26,96 0,314 0,371 10,478 11,464

area particleswarm - 3 61,39 0,588 0,614 6,451 6,551

area simulannealbnd (4.1) 2 27,30 0,316 0,382 10,515 11,653

area simulannealbnd (4.1) 3 58,84 0,579 0,612 6,417 6,543

area simulannealbnd (4.2) 2 28,32 0,315 0,369 10,507 11,442

area simulannealbnd (4.2) 3 56,20 0,579 0,605 6,415 6,516

span ga - 2 13,27 0,222 0,262 8,517 9,448

span ga - 3 20,87 0,371 0,391 5,651 5,725

span particleswarm - 2 28,66 0,314 0,371 10,478 11,464

span particleswarm - 3 54,58 0,588 0,614 6,451 6,551

span patternsearch (4.1) 2 13,19 0,221 0,261 8,494 9,423

span patternsearch (4.1) 3 20,80 0,367 0,387 5,639 5,714

span simulannealbnd (4.1) 2 17,66 0,290 0,339 10,021 10,928

span simulannealbnd (4.1) 3 64,83 0,528 0,549 6,225 6,303

span simulannealbnd (4.2) 2 32,49 0,331 0,362 10,786 11,331

span simulannealbnd (4.2) 3 38,66 0,478 0,516 6,042 6,183

span surrogateopt (4.2) 2 33,63 0,340 0,371 10,950 11,464

span surrogateopt (4.2) 3 39,04 0,476 0,521 6,036 6,199

Table 5.1: Data relevant for critical clearing time estimation for each successful optimization
session, and for each non-referencemachine.M represents the number of themachine being
examined, A is the MRPI area of the examined machine, tM is the time in which the fault
trajectory intersects the MRPI barrier from the pre-fault steady state, whereas tA is the fault
trajectory’s evolution time between the pre-fault steady state, and the admissible set barrier
intersection. Furthermore, sM and sA are the corresponding trajectory lengths respectively.
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First we proceeded by examining the interdependence between MRPI area size, and
fault-on trajectory lengths, as in our hypothesis. The corresponding results are shown
in Figure 5.12.

Figure 5.12: MRPI area vs. trajectory length until MRPI barrier intersection. The dashed line
represents an LS linear regression.

Although there is a significant connection between the two datasets (with p values
in the 10−6 order of magnitude at a 99,99% confidence level when running a two-tailed
t-test), the Pearson correlation coefficients of around -0,5 do not reflect the expected
strong linear correlation. Hence, we disregarded the initial hypothesis, and went on to
undertake a comparison ofMRPI area size and CCT estimates (that is, post-fault barrier
crossing times of the fault-on trajectory). The results are shown in Figure 5.13.
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Figure 5.13: MRPI area vs lower CCT estimate. The dashed line represents an LS linear regres-
sion.

Here we observe amuch stronger positive linear correlation with Pearson correlation
coefficients above 0,94 and p values in the 10−8 range at a at a 99,99% confidence level.
Although such results were not directly expected, they can be accounted for by the ever-
changing evolution speed of the fault trajectory. This is illustrated in Figure 5.14.

Even though the strong correlation between MRPI area size and CCT estimates can
be considered promising, it might worth deliberating over that the speed distribution
shown in Figure 5.14 is unique to the examined fault-on scenario. Hence, to state
whether a good enough correlation between MRPI set area and critical clearing time
exists in a more general sense (that is, for any scenario triplet), further investigation
would be propitious.
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Figure 5.14: Change in evolution speed (Euclidean norm of the derivative vector) of the fault
dynamics as represented by a color map. The more magenta a point is, the faster the fault
dynamic evolution in that state gets.
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CONCLUSION AND OUTLOOK 6
6.1 Summary

In this thesis we have furthered our findings in [46] by building and evaluating a frame-
work for set-based power grid stability optimization. Having surveyed the theoretical
preliminaries and preceding research, we defined and implemented an optimization
problem for MRPI set size optimization. Executing and evaluating various optimiza-
tion scenarios we concluded that —in accordance with [46]— an automated, method-
ical approach is indeed plausible, with the span-based objective function generally out-
performing the area-based one. Next, we pursued to make a statement about the op-
timization problem’s increase in computational complexity. According to our findings,
the SP model’s performance remains close to linear in this regard, whereas that of the
EN model decreases quadratically. Towards the very end, we compared MRPI set ar-
eas and fault-on trajectory lengths, as well as MRPI set areas and CCT estimates, and
have found that although we were expecting a stronger connection at the former com-
parison, it was actually the latter where we observed a very strong correlation. We have
furthermore shown that this is likely due to that speed distribution is heterogenous over
the state space.

6.2 Outlook

Even though for most part our investigations bore fruit, numerous questions also arose
that we did not come to examine. These include:

• Section 4.3 has shown that the span method based objective function was much
more successful at finding MRPI sets than the one based on the area method.
However, we have also mentioned in Section 3.2.2 that this is in most part due
to that the latter does not have the means to efficiently iterate towards valid sets
when the initial design vector is not of global validity. Could we have better opti-
mization results by building a compound goal function that would rely on the span
method for arriving at global MRPI set validity, but then would conduct further op-
timization using the area method?

• Similarly, whether specific combinations of lower performing solvers could bring
better results than a higher performing solver on its own is unknown.

• In Section 4.4 we have examined the computational complexity that arises as the
examined power grid gets more complicated, yet we did not actually showcase
any optimization results for power grids other than the most rudimentary IEEE
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nine-bus three-generator test system. Wold our optimization processes be rea-
sonably applicable to complex, real-life grids?

• Even though a method for set based CCT determination in Section 5.2.1 was con-
sidered, we did not make it subject to comparative analysis. How would the per-
formance of set-based CCT determination differ from that of common methods
in accuracy, reliability, and speed?

• Furthermore, while we have found a strong linear correlation between MRPI set
size and critical clearing time, we did not dispute over the characteristics of this
correlation. Is this correlation always linear? What determines its steepness, dis-
placement and shape?

• In Section 5.2.1 we have been relying solely on the EN model. Would a correlation
have persisted if we were to base our examinations on the SM or SP oscillatory
models?

• The numerical examples for set-based CCT determination in Table 5.1 were calcu-
lated by first obtaining a numerical approximation of the fault-on trajectory, and
the intersecting post-fault MRPI set barrier trajectory, both between the angular
constraints. Then, the intersection of these trajectories were obtained through lin-
ear interpolation. Would it make practical sense to create an algorithm that would
somehow simultaneously conduct forwards integration of the fault-on trajectory,
and —on a distinct time scale— backwards integration of the MRPI barrier until
both reach the intersection point, so that an arbitrarily accurate approximation of
the CCT can be obtained?

• Can we fine-tune optimization so that it is not aiming for MRPI sets of great sizes
in general, but so that certain critical pieces of power equipment can be granted
more stability than others?
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